Planar Generalized Stewart Platforms and Their Direct Kinematics

Author(s):  
Gui-Fang Zhang ◽  
Xiao-Shan Gao



Author(s):  
Anoop Dhingra ◽  
Dilip Kohli ◽  
Yong-Xian Xu

Abstract A formulation for solving the direct kinematics of the general Stewart platform consisting of six moving and six grounded spheric joints is presented. The homotopy method is used for solving the direct kinematics of the platform, and it is shown that there exist a maximum of 40 possible solutions to the direct kinematics problem. These 40 solutions can be obtained by tracking only 64 homotopy paths. It is also shown that there are a maximum of 24 solutions for the Stewart platform with four spheric joints, and there exist a maximum of 16 solutions to the direct kinematics of the Stewart platform with three moving and three grounded spheric joints thus confirming the correctness of 24th and 16th degree direct kinematics polynomials obtained by other researchers.







2021 ◽  
Vol 60 ◽  
pp. 226-238
Author(s):  
Timotej Gašpar ◽  
Igor Kovač ◽  
Aleš Ude


2020 ◽  
Vol 10 (1) ◽  
pp. 65-70
Author(s):  
Andrei Gorchakov ◽  
Vyacheslav Mozolenko

AbstractAny real continuous bounded function of many variables is representable as a superposition of functions of one variable and addition. Depending on the type of superposition, the requirements for the functions of one variable differ. The article investigated one of the options for the numerical implementation of such a superposition proposed by Sprecher. The superposition was presented as a three-layer Feedforward neural network, while the functions of the first’s layer were considered as a generator of space-filling curves (Peano curves). The resulting neural network was applied to the problems of direct kinematics of parallel manipulators.



Robotica ◽  
2011 ◽  
Vol 30 (3) ◽  
pp. 449-456 ◽  
Author(s):  
M. F. Ruiz-Torres ◽  
E. Castillo-Castaneda ◽  
J. A. Briones-Leon

SUMMARYThis work presents the CICABOT, a novel 3-DOF translational parallel manipulator (TPM) with large workspace. The manipulator consists of two 5-bar mechanisms connected by two prismatic joints; the moving platform is on the union of these prismatic joints; each 5-bar mechanism has two legs. The mobility of the proposed mechanism, based on Gogu approach, is also presented. The inverse and direct kinematics are solved from geometric analysis. The manipulator's Jacobian is developed from the vector equation of the robot legs; the singularities can be easily derived from Jacobian matrix. The manipulator workspace is determined from analysis of a 5-bar mechanism; the resulting workspace is the intersection of two hollow cylinders that is much larger than other TPM with similar dimensions.



1994 ◽  
Vol 116 (2) ◽  
pp. 614-621 ◽  
Author(s):  
Yong-Xian Xu ◽  
D. Kohli ◽  
Tzu-Chen Weng

A general formulation for the differential kinematics of hybrid-chain manipulators is developed based on transformation matrices. This formulation leads to velocity and acceleration analyses, as well as to the formation of Jacobians for singularity and unstable configuration analyses. A manipulator consisting of n nonsymmetrical subchains with an arbitrary arrangement of actuators in the subchain is called a hybrid-chain manipulator in this paper. The Jacobian of the manipulator (called here the system Jacobian) is a product of two matrices, namely the Jacobian of a leg and a matrix M containing the inverse of a matrix Dk, called the Jacobian of direct kinematics. The system Jacobian is singular when a leg Jacobian is singular; the resulting singularity is called the inverse kinematic singularity and it occurs at the boundary of inverse kinematic solutions. When the Dk matrix is singular, the M matrix and the system Jacobian do not exist. The singularity due to the singularity of the Dk matrix is the direct kinematic singularity and it provides positions where the manipulator as a whole loses at least one degree of freedom. Here the inputs to the manipulator become dependent on each other and are locked. While at these positions, the platform gains at least one degree of freedom, and becomes statically unstable. The system Jacobian may be used in the static force analysis. A stability index, defined in terms of the condition number of the Dk matrix, is proposed for evaluating the proximity of the configuration to the unstable configuration. Several illustrative numerical examples are presented.



2006 ◽  
Vol 129 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Farhad Tahmasebi

Closed-form direct and inverse kinematics of a new three-degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three-DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base mounted, higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of the tangent of the half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.



2006 ◽  
Vol 22 (5) ◽  
pp. 880-889 ◽  
Author(s):  
J.E. McInroy ◽  
F. Jafari
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document