A Comparative Study on Text Clustering Methods

Author(s):  
Yan Zheng ◽  
Xiaochun Cheng ◽  
Ronghuai Huang ◽  
Yi Man
2014 ◽  
Vol 971-973 ◽  
pp. 1747-1751 ◽  
Author(s):  
Lei Zhang ◽  
Hai Qiang Chen ◽  
Wei Jie Li ◽  
Yan Zhao Liu ◽  
Run Pu Wu

Text clustering is a popular research topic in the field of text mining, and now there are a lot of text clustering methods catering to different application requirements. Currently, Weibo data acquisition is through the API provided by big microblogging platforms. In this essay, we will discuss the algorithm of extracting popular topics posted by Weibo users by text clustering after massive data collection. Due to the fact that traditional text analysis may not be applicable to short texts used in Weibo, text clustering shall be carried out through combining multiple posts into long texts, based on their features (forwards, comments and followers, etc.). Either frequency-based or density-based short text clustering can deliver in most cases. The former is applicable to find hot topics from large Weibo short texts, and the latter is applicable to find abnormal contents. Both the two methods use semantic information to improve the accuracy of clustering. Besides, they improve the performance of clustering through the parallelism.


Author(s):  
B.K. Tripathy ◽  
Adhir Ghosh

Developing Data Clustering algorithms have been pursued by researchers since the introduction of k-means algorithm (Macqueen 1967; Lloyd 1982). These algorithms were subsequently modified to handle categorical data. In order to handle the situations where objects can have memberships in multiple clusters, fuzzy clustering and rough clustering methods were introduced (Lingras et al 2003, 2004a). There are many extensions of these initial algorithms (Lingras et al 2004b; Lingras 2007; Mitra 2004; Peters 2006, 2007). The MMR algorithm (Parmar et al 2007), its extensions (Tripathy et al 2009, 2011a, 2011b) and the MADE algorithm (Herawan et al 2010) use rough set techniques for clustering. In this chapter, the authors focus on rough set based clustering algorithms and provide a comparative study of all the fuzzy set based and rough set based clustering algorithms in terms of their efficiency. They also present problems for future studies in the direction of the topics covered.


2021 ◽  
Author(s):  
◽  
Abdul Wahid

<p>Clustering is an unsupervised machine learning technique, which involves discovering different clusters (groups) of similar objects in unlabeled data and is generally considered to be a NP hard problem. Clustering methods are widely used in a verity of disciplines for analyzing different types of data, and a small improvement in clustering method can cause a ripple effect in advancing research of multiple fields.  Clustering any type of data is challenging and there are many open research questions. The clustering problem is exacerbated in the case of text data because of the additional challenges such as issues in capturing semantics of a document, handling rich features of text data and dealing with the well known problem of the curse of dimensionality.  In this thesis, we investigate the limitations of existing text clustering methods and address these limitations by providing five new text clustering methods--Query Sense Clustering (QSC), Dirichlet Weighted K-means (DWKM), Multi-View Multi-Objective Evolutionary Algorithm (MMOEA), Multi-objective Document Clustering (MDC) and Multi-Objective Multi-View Ensemble Clustering (MOMVEC). These five new clustering methods showed that the use of rich features in text clustering methods could outperform the existing state-of-the-art text clustering methods.  The first new text clustering method QSC exploits user queries (one of the rich features in text data) to generate better quality clusters and cluster labels.  The second text clustering method DWKM uses probability based weighting scheme to formulate a semantically weighted distance measure to improve the clustering results.  The third text clustering method MMOEA is based on a multi-objective evolutionary algorithm. MMOEA exploits rich features to generate a diverse set of candidate clustering solutions, and forms a better clustering solution using a cluster-oriented approach.  The fourth and the fifth text clustering method MDC and MOMVEC address the limitations of MMOEA. MDC and MOMVEC differ in terms of the implementation of their multi-objective evolutionary approaches.  All five methods are compared with existing state-of-the-art methods. The results of the comparisons show that the newly developed text clustering methods out-perform existing methods by achieving up to 16\% improvement for some comparisons. In general, almost all newly developed clustering algorithms showed statistically significant improvements over other existing methods.  The key ideas of the thesis highlight that exploiting user queries improves Search Result Clustering(SRC); utilizing rich features in weighting schemes and distance measures improves soft subspace clustering; utilizing multiple views and a multi-objective cluster oriented method improves clustering ensemble methods; and better evolutionary operators and objective functions improve multi-objective evolutionary clustering ensemble methods.  The new text clustering methods introduced in this thesis can be widely applied in various domains that involve analysis of text data. The contributions of this thesis which include five new text clustering methods, will not only help researchers in the data mining field but also to help a wide range of researchers in other fields.</p>


Author(s):  
Riju Bhattacharya ◽  
Naresh Kumar Nagwani ◽  
Sarsij Tripathi

Graph kernels have evolved as a promising and popular method for graph clustering over the last decade. In this work, comparative study on the five standard graph kernel techniques for graph clustering has been performed. The graph kernels, namely vertex histogram kernel, shortest path kernel, graphlet kernel, k-step random walk kernel, and Weisfeiler-Lehman kernel have been compared for graph clustering. The clustering methods considered for the kernel comparison are hierarchical, k-means, model-based, fuzzy-based, and self-organizing map clustering techniques. The comparative study of kernel methods over the clustering techniques is performed on MUTAG benchmark dataset. Clustering performance is assessed with internal validation performance parameters such as connectivity, Dunn, and the silhouette index. Finally, the comparative analysis is done to facilitate researchers for selecting the appropriate kernel method for effective graph clustering. The proposed methodology elicits k-step random walk and shortest path kernel have performed best among all graph clustering approaches.


2018 ◽  
Author(s):  
Hyunki Woo ◽  
Kyunga Kim ◽  
KyeongMin Cha ◽  
Jin-Young Lee ◽  
Hansong Mun ◽  
...  

BACKGROUND Since medical research based on big data has become more common, the community’s interest and effort to analyze a large amount of semistructured or unstructured text data, such as examination reports, have rapidly increased. However, these large-scale text data are often not readily applicable to analysis owing to typographical errors, inconsistencies, or data entry problems. Therefore, an efficient data cleaning process is required to ensure the veracity of such data. OBJECTIVE In this paper, we proposed an efficient data cleaning process for large-scale medical text data, which employs text clustering methods and value-converting technique, and evaluated its performance with medical examination text data. METHODS The proposed data cleaning process consists of text clustering and value-merging. In the text clustering step, we suggested the use of key collision and nearest neighbor methods in a complementary manner. Words (called values) in the same cluster would be expected as a correct value and its wrong representations. In the value-converting step, wrong values for each identified cluster would be converted into their correct value. We applied these data cleaning process to 574,266 stool examination reports produced for parasite analysis at Samsung Medical Center from 1995 to 2015. The performance of the proposed process was examined and compared with data cleaning processes based on a single clustering method. We used OpenRefine 2.7, an open source application that provides various text clustering methods and an efficient user interface for value-converting with common-value suggestion. RESULTS A total of 1,167,104 words in stool examination reports were surveyed. In the data cleaning process, we discovered 30 correct words and 45 patterns of typographical errors and duplicates. We observed high correction rates for words with typographical errors (98.61%) and typographical error patterns (97.78%). The resulting data accuracy was nearly 100% based on the number of total words. CONCLUSIONS Our data cleaning process based on the combinatorial use of key collision and nearest neighbor methods provides an efficient cleaning of large-scale text data and hence improves data accuracy.


2018 ◽  
Vol 29 (1) ◽  
pp. 814-830 ◽  
Author(s):  
Hasan Rashaideh ◽  
Ahmad Sawaie ◽  
Mohammed Azmi Al-Betar ◽  
Laith Mohammad Abualigah ◽  
Mohammed M. Al-laham ◽  
...  

Abstract Text clustering problem (TCP) is a leading process in many key areas such as information retrieval, text mining, and natural language processing. This presents the need for a potent document clustering algorithm that can be used effectively to navigate, summarize, and arrange information to congregate large data sets. This paper encompasses an adaptation of the grey wolf optimizer (GWO) for TCP, referred to as TCP-GWO. The TCP demands a degree of accuracy beyond that which is possible with metaheuristic swarm-based algorithms. The main issue to be addressed is how to split text documents on the basis of GWO into homogeneous clusters that are sufficiently precise and functional. Specifically, TCP-GWO, or referred to as the document clustering algorithm, used the average distance of documents to the cluster centroid (ADDC) as an objective function to repeatedly optimize the distance between the clusters of the documents. The accuracy and efficiency of the proposed TCP-GWO was demonstrated on a sufficiently large number of documents of variable sizes, documents that were randomly selected from a set of six publicly available data sets. Documents of high complexity were also included in the evaluation process to assess the recall detection rate of the document clustering algorithm. The experimental results for a test set of over a part of 1300 documents showed that failure to correctly cluster a document occurred in less than 20% of cases with a recall rate of more than 65% for a highly complex data set. The high F-measure rate and ability to cluster documents in an effective manner are important advances resulting from this research. The proposed TCP-GWO method was compared to the other well-established text clustering methods using randomly selected data sets. Interestingly, TCP-GWO outperforms the comparative methods in terms of precision, recall, and F-measure rates. In a nutshell, the results illustrate that the proposed TCP-GWO is able to excel compared to the other comparative clustering methods in terms of measurement criteria, whereby more than 55% of the documents were correctly clustered with a high level of accuracy.


Sign in / Sign up

Export Citation Format

Share Document