Burning velocity of stretched flames

Author(s):  
Tadao Takeno ◽  
Makihito Nishioka ◽  
Satoru Ishizuka
Keyword(s):  
2014 ◽  
Vol 39 (17) ◽  
pp. 9534-9544 ◽  
Author(s):  
Yong He ◽  
Zhihua Wang ◽  
Wubin Weng ◽  
Yanqun Zhu ◽  
Junhu Zhou ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


2021 ◽  
Vol 62 (5) ◽  
Author(s):  
M. E. Morsy ◽  
J. Yang

Abstract Particle image velocimetry (PIV) has become a popular non-intrusive tool for measuring various types of flows. However, when measuring three-dimensional flows with two-dimensional (2D) PIV, there are some uncertainties in the measured velocity field due to out-of-plane motion, which might alter turbulence statistics and distort the overall flow characteristics. In the present study, three different turbulence models are employed and compared. Mean and fluctuating fields obtained by three-dimensional computational fluid dynamics modeling are compared to experimental data. Turbulence statistics such as integral length scale, Taylor microscale, Kolmogorov scale, turbulence kinetic energy, dissipation rate, and velocity correlations are calculated at different experimental conditions (i.e., pressure, temperature, fan speed, etc.). A reasonably isotropic and homogeneous turbulence with large turbulence intensities is achieved in the central region extending to almost 45 mm radius. This radius decreases with increasing the initial pressure. The influence of the third dimension velocity component on the measured characteristics is negligible. This is a result of the axisymmetric features of the flow pattern in the current vessel. The results prove that the present vessel can be conveniently adopted for several turbulent combustion studies including mainly the determination of turbulent burning velocity for gaseous premixed flames in nearly homogeneous isotropic turbulence. Graphic abstract


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Eliseu Monteiro ◽  
Abel Rouboa

In the currently reported work, three typical mixtures of H2, CO, CH4, CO2, and N2 have been considered as representative of the producer gas (syngas) coming from biomass gasification. Syngas is being recognized as a viable energy source worldwide, particularly for stationary power generation. However, there are gaps in the fundamental understand of syngas combustion characteristics, especially at elevated pressures that are relevant to practical combustors. In this work, constant volume spherical expanding flames of three typical syngas compositions resulting from biomass gasification have been employed to measure the laminar burning velocities for pressures ranges between 1.0 and 20 bar tanking into account the stretch effect on burning velocity. Over the ranges studied, the burning velocities are fit by a functional form Su=Su0(T/T0)α(P/P0)β; and the dependencies of α and β upon the equivalence ratio of mixture are also given. Conclusion can be drawn that the burning velocity decreases with the increase of pressure. In opposite, an increase in temperature induces an increase of the burning velocity. The higher burning velocity value is obtained for downdraft syngas. This result is endorsed to the higher heat value, lower dilution and higher volume percentage of hydrogen in the downdraft syngas.


Sign in / Sign up

Export Citation Format

Share Document