Web-Based 3D Visual User Interface to a Flood Forecasting System

2005 ◽  
pp. 1021-1039 ◽  
Author(s):  
Mikael Jern
2006 ◽  
Vol 37 (3) ◽  
pp. 146-158 ◽  
Author(s):  
Xiang-Yang Li ◽  
K.W. Chau ◽  
Chun-Tian Cheng ◽  
Y.S. Li

2018 ◽  
Vol 10 (3) ◽  
pp. 535-545 ◽  
Author(s):  
Nguyen Kim Loi ◽  
Nguyen Duy Liem ◽  
Le Hoang Tu ◽  
Nguyen Thi Hong ◽  
Cao Duy Truong ◽  
...  

Abstract The precise and reliable simulation of hydrologic and hydraulic processes is important for efficient flood forecasting and warning. The study proposes a real-time flood forecasting system which integrates a coupled hydrological-hydraulic modeling system, weather station network, and stream gauges in a web-based visualization environment. An automated procedure was developed for linking dynamically terrestrial rainfall-runoff processes and river hydraulics by coupling the SWAT hydrological model and the HEC-RAS hydraulic model. The flood forecasting system was trialed in the Vu Gia – Thu Bon river basin, Quang Nam province, Vietnam. The results showed good statistical correlation between predicted and measured stream flow for a 10-year calibration period (R² = 0.95, NSI = 0.95, PBIAS = −1.54) and during the following 10-year validation period as well (R² = 0.93, NSI = 0.93, PBIAS = 6.18). A close-up analysis of individual storm events indicated that the magnitude and timing of peak floods were accurately predicted in 2015 (R² = 0.88, NSI = 0.69, PBIAS = 4.50) and 2016 (R² = 0.80, NSI = 0.93, PBIAS = 6.18). In addition, the automated procedure was demonstrated to be reliable with dependable computational efficiency of less than 5 minutes' processing time.


Author(s):  
Julie S. Doll

Abstract To enable efficient, accurate debug of Intel architecture components to take place within contract manufacturing sites, and to provide alternatives for the removal of Intel components from, Intel is deploying a diagnostic capability and attendant educational collateral known as to achieve these objectives Intel® Component Diagnostic Technology. This paper will describe details of Intel® Component Diagnostic Technology, including the diagnostic fixture and user interface, diagnostic scripts and analytical coverage, data management and reporting, and on-site and Web-based educational offerings.


2015 ◽  
Vol 19 (8) ◽  
pp. 3365-3385 ◽  
Author(s):  
V. Thiemig ◽  
B. Bisselink ◽  
F. Pappenberger ◽  
J. Thielen

Abstract. The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions by the ECMWF (European Centre for Medium-Ranged Weather Forecasts) and critical hydrological thresholds. In this paper, the predictive capability is investigated in a hindcast mode, by reproducing hydrological predictions for the year 2003 when important floods were observed. Results were verified by ground measurements of 36 sub-catchments as well as by reports of various flood archives. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a large potential as an operational pan-African flood forecasting system, although issues related to the practical implication will still need to be investigated.


Author(s):  
Henry Larkin

Purpose – The purpose of this paper is to investigate the feasibility of creating a declarative user interface language suitable for rapid prototyping of mobile and Web apps. Moreover, this paper presents a new framework for creating responsive user interfaces using JavaScript. Design/methodology/approach – Very little existing research has been done in JavaScript-specific declarative user interface (UI) languages for mobile Web apps. This paper introduces a new framework, along with several case studies that create modern responsive designs programmatically. Findings – The fully implemented prototype verifies the feasibility of a JavaScript-based declarative user interface library. This paper demonstrates that existing solutions are unwieldy and cumbersome to dynamically create and adjust nodes within a visual syntax of program code. Originality/value – This paper presents the Guix.js platform, a declarative UI library for rapid development of Web-based mobile interfaces in JavaScript.


2001 ◽  
Author(s):  
Joo Heon Lee ◽  
Do Hun Lee ◽  
Sang Man Jeong ◽  
Eun Tae Lee

Sign in / Sign up

Export Citation Format

Share Document