Author(s):  
T. T. C. Ting

In this chapter we study Stroh's sextic formalism for two-dimensional deformations of an anisotropic elastic body. The Stroh formalism can be traced to the work of Eshelby, Read, and Shockley (1953). We therefore present the latter first. Not all results presented in this chapter are due to Stroh (1958, 1962). Nevertheless we name the sextic formalism after Stroh because he laid the foundations for researchers who followed him. The derivation of Stroh's formalism is rather simple and straightforward. The general solution resembles that obtained by the Lekhnitskii formalism. However, the resemblance between the two formalisms stops there. As we will see in the rest of the book, the Stroh formalism is indeed mathematically elegant and technically powerful in solving two-dimensional anisotropic elasticity problems. The possibility of extending the formalism to three-dimensional deformations is explored in Chapter 15.


1980 ◽  
Vol 15 (1) ◽  
pp. 37-41 ◽  
Author(s):  
P S Theocaris ◽  
N I Ioakimidis

The optical method of caustics constitutes an efficient experimental technique for the determination of quantities of interest in elasticity problems. Up to now, this method has been applied only to two-dimensional elasticity problems (including plate and shell problems). In this paper, the method of caustics is extended to the case of three-dimensional elasticity problems. The particular problems of a concentrated force and a uniformly distributed loading acting normally on a half-space (on a circular region) are treated in detail. Experimentally obtained caustics for the first of these problems were seen to be in satisfactory agreement with the corresponding theoretical forms. The treatment of various, more complicated, three-dimensional elasticity problems, including contact problems, by the method of caustics is also possible.


2011 ◽  
Vol 03 (04) ◽  
pp. 735-758 ◽  
Author(s):  
HONGPING REN ◽  
YUMIN CHENG

In this paper, a new method for deriving the moving least-squares (MLS) approximation is presented, and the interpolating moving least-squares (IMLS) method proposed by Lancaster is improved. Compared with the IMLS method proposed by Lancaster, a simpler formula of the shape function is given in the improved IMLS method in this paper so that the new method has higher computing efficiency. Combining the shape function constructed by the improved IMLS method with Galerkin weak form of the elasticity problems, the interpolating element-free Galerkin (IEFG) method for the two-dimensional elasticity problems is presented, and the corresponding formulae are obtained. In the IEFG method, the boundary conditions can be applied directly which makes the computing efficiency higher than the conventional EFG method. Some numerical examples are presented to demonstrate the validity of the method.


1952 ◽  
Vol 19 (4) ◽  
pp. 537-542
Author(s):  
Yi-Yuan Yu

Abstract Gravitational stresses around a horizontal tunnel opening are determined by means of Muschelišvili’s complex variable method for solving two-dimensional elasticity problems. The tunnel is located at a large but finite depth underneath the horizontal ground surface. It has the shape of a general ovaloid, including the rounded-cornered square, the ellipse, and the circle as its special cases. The surrounding material is assumed to be elastic, isotropic, and homogeneous. Two problems are solved. In one problem an unlined tunnel is considered, which has a boundary free from external stresses. In the other the tunnel has a rigid lining, and a perfect bond is assumed to exist between the lining and the surrounding material so that the displacements at the boundary are zero.


Sign in / Sign up

Export Citation Format

Share Document