A numerical study of mixing enhancement in supersonic reacting flow fields

Author(s):  
J. Philip Drummond ◽  
H. S. Mukunda
Author(s):  
Tong Li ◽  
Yibin Wang ◽  
Ning Zhao

The simple frigate shape (SFS) as defined by The Technical Co-operative Program (TTCP), is a simplified model of the frigate, which helps to investigate the basic flow fields of a frigate. In this paper, the flow fields of the different modified SFS models, consisting of a bluff body superstructure and the deck, were numerically studied. A parametric study was conducted by varying both the superstructure length L and width B to investigate the recirculation zone behind the hangar. The size and the position of the recirculation zones were compared between different models. The numerical simulation results show that the size and the location of the recirculation zone are significantly affected by the superstructure length and width. The results obtained by Reynolds-averaged Navier-Stokes method were also compared well with both the time averaged Improved Delayed Detached-Eddy Simulation results and the experimental data. In addition, by varying the model size and inflow velocity, various flow fields were numerically studied, which indicated that the changing of Reynolds number has tiny effect on the variation of the dimensionless size of the recirculation zone. The results in this study have certain reference value for the design of the frigate superstructure.


2017 ◽  
Vol 42 (38) ◽  
pp. 24319-24337 ◽  
Author(s):  
M. Ghasemi ◽  
A. Ramiar ◽  
A.A. Ranjbar ◽  
S.M. Rahgoshay

Author(s):  
H. Ek ◽  
I. Chterev ◽  
N. Rock ◽  
B. Emerson ◽  
J. Seitzman ◽  
...  

This paper presents measurements of the simultaneous fuel distribution, flame position and flow velocity in a high pressure, liquid fueled combustor. Its objective is to develop methods to process, display and compare large quantities of instantaneous data with computations. However, time-averaged flow fields rarely represent the instantaneous, dynamical flow fields in combustion systems. It is therefore important to develop methods that can algorithmically extract dynamical flow features and be directly compared between measurements and computations. While a number of data-driven approaches have been previously presented in the literature, the purpose of this paper is to propose several approaches that are based on understanding of key physical features of the flow — for this reacting swirl flow, these include the annular jet, the swirling flow which may be precessing, the recirculating flow between the annular jets, and the helical flow structures in the shear layers. This paper demonstrates nonlinear averaging of axial and azimuthal velocity profiles, which provide insights into the structure of the recirculation zone and degree of flow precession. It also presents probability fields for the location of vortex cores that enables a convenient method for comparison of their trajectory and phasing with computations. Taken together, these methods illustrate the structure and relative locations of the annular fluid jet, recirculating flow zone, spray location, flame location, and trajectory of the helical vortices.


2020 ◽  
Vol 36 (6) ◽  
pp. 933-941
Author(s):  
A. M. Tahsini

ABSTRACTThe performance of the solid fuel ramjet is accurately predicted using full part simulation of this propulsion system, where the flow fields of the intake, combustion chamber, and the nozzle are numerically studied all together. The conjugate heat transfer is considered between the solid phase and the gas phase to directly compute the regression rate of the fuel. The finite volume solver of the compressible turbulent reacting flow is utilized to study the axisymmetric three dimensional flow fields, and two blocks are used to discretize the computational domain. It is shown that the combustion chamber's pressure is changed due to the fuel flow rate's increment which must be taken into account in predictions. The results demonstrate that omitting the pressure dependence of the regression rate and also the effect of the combustor's inlet profile on the regression rate, which specially exists when simulating the combustion chamber individually, under-predicts the solid fuel burning rate when the regression rate augmentation technique is applied to improve the performance of the solid fuel ramjets. It is also illustrated that using the inlet swirl to increase the regression rate of the solid fuel augments considerably the thrust level of the considered SFRJ, while the predictions without considering all parts of the ramjet is not accurate.


1998 ◽  
Vol 14 (1) ◽  
pp. 10-17 ◽  
Author(s):  
S. Yungster ◽  
K. Radhakrishnan ◽  
M. J. Rabinowitz

2015 ◽  
Vol 72 (4) ◽  
Author(s):  
Norwazan A. R. ◽  
Mohammad Nazri Mohd. Jaafar

The numerical simulations of swirling turbulent flows in isothermal condition in combustion chamber of burner were investigated. The aim is to characterize the main flow structures and turbulence in a combustor that is relevant to gas turbines. Isothermal flows with different inlet flow velocities were considered to demonstrate the effect of radial velocity. The inlet velocity, Uo is varied from 30 m/s to 60 m/s represent a high Reynolds number up to 3.00 X 105. The swirler was located at the upstream of combustor with the swirl number of 0.895. A numerical study of non-reacting flow in the burner region was performed using ANSYS Fluent. The Reynolds–Averaged Navier–Stokes (RANS) approach method was applied with the standard k-ɛ turbulence equations. The various velocity profiles were different after undergoing the different inlet velocity up to the burner exit. The results of velocity profile showed that the high U0 give better swirling flow patterns.


Sign in / Sign up

Export Citation Format

Share Document