Transonic wing analysis and design using Navier-Stokes equations

Author(s):  
N. J. Yu
1996 ◽  
Vol 118 (2) ◽  
pp. 335-340 ◽  
Author(s):  
Mohamed Selmi

This paper is concerned with the solution of the 3-D-Navier-Stokes equations describing the steady motion of a viscous fluid inside a partially filled spinning and coning cylinder. The cylinder contains either a single fluid of volume less than that of the cylinder or a central rod and a single fluid of combined volume (volume of the rod plus volume of the fluid) equal to that of the cylinder. The cylinder rotates about its axis at the spin rate ω and rotates about an axis that passes through its center of mass at the coning rate Ω. In practical applications, as in the analysis and design of liquid-filled projectiles, the parameter ε = τ sin θ, where τ = Ω/ω and θ is the angle between spin axis and coning axis, is small. As a result, linearization of the Navier-Stokes equations with this parameter is possible. Here, the full and linearized Navier-Stokes equations are solved by a spectral collocation method to investigate the nonlinear effects on the moments caused by the motion of the fluid inside the cylinder. In this regard, it has been found that nonlinear effects are negligible for τ ≈ 0.1, which is of practical interest to the design of liquid-filled projectiles, and the solution of the linearized Navier-Stokes equations is adequate for such a case. However, as τ increases, nonlinear effects increase, and become significant as ε surpasses about 0.1. In such a case, the nonlinear problem must be solved. Complete details on how to solve such a problem is presented.


Author(s):  
Luca Mangani ◽  
Marwan Darwish ◽  
Fadl Moukalled

In this paper we present a fully coupled algorithm for the resolution of compressible flows at all speed. The pressure-velocity coupling at the heart of the Navier Stokes equations is accomplished by deriving a pressure equation in similar fashion to what is done in the segregated SIMPLE algorithm except that the influence of the velocity fields is treated implicitly. In a similar way, the assembly of the momentum equations is modified to treat the pressure gradient implicitly. The resulting extended system of equations, now formed of matrix coefficients that couples the momentum and pressure equations, is solved using an algebraic multigrid solver. The performance of the coupled approach and the improved efficiency of the novel developed code was validated comparing results with experimental and numerical data available from reference literature test cases as well as with segregated solver as exemplified by the SIMPLE algorithm. Moreover the reference geometries considered in the validation process cover the typical aerodynamics applications in gas turbine analysis and design, considering Euler to turbulent flow problems and clearly indicating the substantial improvements in terms of computational cost and robustness.


1991 ◽  
Vol 113 (2) ◽  
pp. 176-182 ◽  
Author(s):  
H. Chiang ◽  
C. Kleinstreuer

A validated computer simulation model has been developed for the analysis and design of colinear porous sphere systems in a convective stream. Using a modified and extended finite element software package, the steady-state Navier-Stokes equations have been solved describing laminar axisymmetric flow past closely spaced monodisperse spheres with fluid injection. Of interest are the coupled nonlinear interaction effects on the fluid flow patterns and ultimately on the drag coefficient of each sphere for different free stream Reynolds numbers (20 ≤ Re ≤ 200) and intersphere spacings (1.5 ≤ dij ≤ 6.0) in the presence of fluid injection (0 ≤ vb ≤ 0.1). At small spacings and low Reynolds numbers, fluid injection causes earlier flow separation while for Re ≥ 100 surface blowing is more influential in altering the recirculation zones between spheres and thickening the boundary layers. As a result, the total drag of each sphere decreases with increasing blowing intensity although the pressure or form drag of the first sphere may increase at small spacings.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 56-63
Author(s):  
W. Kyle Anderson ◽  
James C. Newman ◽  
David L. Whitfield ◽  
Eric J. Nielsen

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

Sign in / Sign up

Export Citation Format

Share Document