Quantum-mechanical interpretation of density functional theory

Author(s):  
Viraht Sahni
2017 ◽  
Vol 31 (24) ◽  
pp. 1740003 ◽  
Author(s):  
Xu Zhang ◽  
Hongping Xiang ◽  
Mingliang Zhang ◽  
Gang Lu

Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn–Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.


Sign in / Sign up

Export Citation Format

Share Document