scholarly journals General-purpose parallel computing in a high-energy physics experiment at CERN

Author(s):  
J. Apostolakis ◽  
L. M. Bertolotto ◽  
C. E. Bruschini ◽  
P. Calafiura ◽  
F. Gagliardi ◽  
...  
2019 ◽  
Vol 214 ◽  
pp. 05026
Author(s):  
Jiaheng Zou ◽  
Tao Lin ◽  
Weidong Li ◽  
Xingtao Huang ◽  
Ziyan Deng ◽  
...  

SNiPER is a general purpose offline software framework for high energy physics experiment. It provides some features that are attractive to neutrino experiments, such as the event buffer. More than one events are available in the buffer according to a customizable time window, so that it is easy for users to apply events correlation analysis. We also implemented the MT-SNiPER to support multithreading computing based on Intel TBB. In MT-SNiPER, the event loop is split into pieces, and each piece is dispatched to a task. The global buffer, an extension and enhancement to the event buffer, is implemented for MT-SNiPER. The global buffer is available by all threads. It keeps all the events being processed in memory. When there is an available task, a subset of its events is dispatched to that task. There can be overlaps between the subsets in different tasks due to the time window. However, it is ensured that each event is processed only once. In the task side, the subsets of events are locally managed by a normal event buffer. So the global buffer can be transparent to most user algorithms. Within the global buffer, the multithreading computing of MT-SNiPER becomes more practicable.


1990 ◽  
Vol 01 (04) ◽  
pp. 343-353
Author(s):  
IAN WILLERS

This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.


2019 ◽  
Author(s):  
Juan Carlos Cabanillas Noris ◽  
Ildefonso León Monzón ◽  
Mario Iván Martínez Hernández ◽  
Solangel Rojas Torres

2019 ◽  
Vol 214 ◽  
pp. 04020 ◽  
Author(s):  
Martin Barisits ◽  
Fernando Barreiro ◽  
Thomas Beermann ◽  
Karan Bhatia ◽  
Kaushik De ◽  
...  

Transparent use of commercial cloud resources for scientific experiments is a hard problem. In this article, we describe the first steps of the Data Ocean R&D collaboration between the high-energy physics experiment ATLAS together with Google Cloud Platform, to allow seamless use of Google Compute Engine and Google Cloud Storage for physics analysis. We start by describing the three preliminary use cases that were identified at the beginning of the project. The following sections then detail the work done in the data management system Rucio and the workflow management systems PanDA and Harvester to interface Google Cloud Platform with the ATLAS distributed computing environment, and show the results of the integration tests. Afterwards, we describe the setup and results from a full ATLAS user analysis that was executed natively on Google Cloud Platform, and give estimates on projected costs. We close with a summary and and outlook on future work.


2020 ◽  
Vol 33 ◽  
pp. 100409
Author(s):  
D. Sarkar ◽  
Mahesh P. ◽  
Padmini S. ◽  
N. Chouhan ◽  
C. Borwankar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document