Metabolic Scaling Applied to Native Woody Savanna Species in the Pantanal of Nhecolândia

Author(s):  
I. Bergier ◽  
S. M. Salis ◽  
P. P. Mattos
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helena Bestová ◽  
Jules Segrestin ◽  
Klaus von Schwartzenberg ◽  
Pavel Škaloud ◽  
Thomas Lenormand ◽  
...  

AbstractThe Metabolic Scaling Theory (MST), hypothesizes limitations of resource-transport networks in organisms and predicts their optimization into fractal-like structures. As a result, the relationship between population growth rate and body size should follow a cross-species universal quarter-power scaling. However, the universality of metabolic scaling has been challenged, particularly across transitions from bacteria to protists to multicellulars. The population growth rate of unicellulars should be constrained by external diffusion, ruling nutrient uptake, and internal diffusion, operating nutrient distribution. Both constraints intensify with increasing size possibly leading to shifting in the scaling exponent. We focused on unicellular algae Micrasterias. Large size and fractal-like morphology make this species a transitional group between unicellular and multicellular organisms in the evolution of allometry. We tested MST predictions using measurements of growth rate, size, and morphology-related traits. We showed that growth scaling of Micrasterias follows MST predictions, reflecting constraints by internal diffusion transport. Cell fractality and density decrease led to a proportional increase in surface area with body mass relaxing external constraints. Complex allometric optimization enables to maintain quarter-power scaling of population growth rate even with a large unicellular plan. Overall, our findings support fractality as a key factor in the evolution of biological scaling.


Trees ◽  
2021 ◽  
Author(s):  
Hans Pretzsch

Abstract Key message Prediction of tree growth based on size or mass as proposed by the Metabolic Scaling Theory is an over-simplification and can be significantly improved by consideration of stem and crown morphology. Tree growth and metabolic scaling theory, as well as corresponding growth equations, use tree volume or mass as predictors for growth. However, this may be an over-simplification, as the future growth of a tree may, in addition to volume or mass, also depend on its past development and aspects of the current inner structure and outer morphology. The objective of this evaluation was to analyse the effect of selected structural and morphological tree characteristics on the growth of common tree species in Europe. Here, we used eight long-term experiments with a total of 24 plots and extensive individual measurements of 1596 trees in monospecific stands of European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Some of the experiments have been systematically surveyed since 1870. The selected plots represent a broad range of stand density, from fully to thinly stocked stands. We applied linear mixed models with random effects for analysing and modelling how tree growth and productivity are affected by stem and crown structure. We used the species-overarching relationship $$\mathrm{iv}={{a}_{0}\times v}$$ iv = a 0 × v between stem volume growth, $$\mathrm{iv}$$ iv and stem volume, $$v,$$ v , as the baseline model. In this model $${a}_{0}$$ a 0 represents the allometric factor and α the allometric exponent. Then we included tree age, mean stem volume of the stand and structural and morphological tree variables in the model. This significantly reduced the AIC; RMSE was reduced by up to 43%. Interestingly, the full model estimating $$\mathrm{iv}$$ iv as a function of $$v$$ v and mean tree volume, crown projection area, crown ratio and mean tree ring width, revealed a $$\alpha \cong 3/4$$ α ≅ 3 / 4 scaling for the relationship between $$\mathrm{iv}\propto {v}^{\alpha }$$ iv ∝ v α . This scaling corresponded with Kleiber’s rule and the West-Brown-Enquist model of the metabolic scaling theory. Simplified approaches based on stem diameter or tree mass as predictors may be useful for a rough estimation of stem growth in uniform stands and in cases where more detailed predictors are not available. However, they neglect other stem and crown characteristics that can have a strong additional effect on the growth behaviour. This becomes of considerable importance in the heterogeneous mixed-species stands that in many countries of the world are designed for forest restoration. Heterogeneous stand structures increase the structural variability of the individual trees and thereby cause a stronger variation of growth compared with monocultures. Stem and crown characteristics, which may improve the analysis and projection of tree and stand dynamics in the future forest, are becoming more easily accessible by Terrestrial laser scanning.


2007 ◽  
Vol 13 (3) ◽  
pp. 591-609 ◽  
Author(s):  
BRIAN J. ENQUIST ◽  
ANDREW J. KERKHOFF ◽  
TRAVIS E. HUXMAN ◽  
EVAN P. ECONOMO

2012 ◽  
Vol 27 (2) ◽  
pp. 13
Author(s):  
L. A. Salcido -Guevara ◽  
F. Arreguín -Sánchez ◽  
L. Palmeri ◽  
A. Barausse

We tested the hypothesis that ecosystem metabolism follows a quarter power scaling relation, analogous to organisms. Logarithm of Biomass/Production (B/P) to Trophic Level (TL) relationship was estimated to 98 trophic models of aquatic ecosystems. A normal distribution of the slopes gives a modal value of 0.64, which was significantly different of the theoretical value of 0.75 (p0.05). We also tested for error in both variables, Log (B/P) and TL, through a Reduced Major Axis regression with similar results, with a modal value of 0.756 (p>0.05). We also explored a geographic distribution showing no significant relation (p>0.05) to latitude and between different regions of the world. We conclude that: a) ecosystem metabolism follows the quarter-power scaling rule; b) transfer efficiency between TL plays a relevant role characterizing local attributes to ecosystem metabolism; and c) there is neither latitudinal nor geographic differences. These findings confirm the existence of a metabolic scaling regularity in aquatic ecosystems. Regularidad del escalamiento metabólico en ecosistemas acuáticos Se contrastó la hipótesis de que el metabolismo de un ecosistema sigue una relación de escalamiento análoga a la existente en los organismos. La relación entre el logaritmo de la razón Producción/Biomasa (B/P) y el nivel trófico (TL) se estimó para 98 modelos tróficos de los ecosistemas acuáticos. Una distribución normal de las pendientes de esta relación produjo un valor modal de 0.64 que es significativamente diferente del valor teórico de 0.75 (p0.05) similar al teórico esperado. También se contrastó la hipótesis de existencia de error en ambas variables, logaritmo (B/P) y TL, a través de la técnica de regresión denominada “Reduced Major Axis”, con resultados similares según el valor modal de 0.756, sin diferencia estadísticamente significativa (p>0.05) del valor teórico. Se exploró la existencia de algún patrón en la distribución geográfica, sin obtenerse relación significativa (p>0.05) con la latitud, o con diferentes regiones del mundo. Las conclusiones son: a) el metabolismo del ecosistema sigue la regla de escalamiento metabólico de 3/4; b) la eficiencia de la transferencia entre TL desempeña un papel relevante, representando los atributos locales del metabolismo del ecosistema; c) no hay una diferencias latitudinal o geográfica. Estos resultados confirman la existencia de una regularidad en el escalamiento metabólico en ecosistemas acuáticos.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Fernando J. Ballesteros ◽  
Vicent J. Martinez ◽  
Bartolo Luque ◽  
Lucas Lacasa ◽  
Enric Valor ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document