Effective Theories of Electroweak Interactions

Author(s):  
Wolfgang Kilian
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Lara B. Anderson ◽  
James Gray ◽  
Andre Lukas ◽  
Juntao Wang

Abstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Rafael Aoude ◽  
Kays Haddad ◽  
Andreas Helset

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yuta Ito ◽  
Hideo Matsufuru ◽  
Yusuke Namekawa ◽  
Jun Nishimura ◽  
Shinji Shimasaki ◽  
...  

Abstract We demonstrate that the complex Langevin method (CLM) enables calculations in QCD at finite density in a parameter regime in which conventional methods, such as the density of states method and the Taylor expansion method, are not applicable due to the severe sign problem. Here we use the plaquette gauge action with β = 5.7 and four-flavor staggered fermions with degenerate quark mass ma = 0.01 and nonzero quark chemical potential μ. We confirm that a sufficient condition for correct convergence is satisfied for μ/T = 5.2 − 7.2 on a 83 × 16 lattice and μ/T = 1.6 − 9.6 on a 163 × 32 lattice. In particular, the expectation value of the quark number is found to have a plateau with respect to μ with the height of 24 for both lattices. This plateau can be understood from the Fermi distribution of quarks, and its height coincides with the degrees of freedom of a single quark with zero momentum, which is 3 (color) × 4 (flavor) × 2 (spin) = 24. Our results may be viewed as the first step towards the formation of the Fermi sphere, which plays a crucial role in color superconductivity conjectured from effective theories.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 273
Author(s):  
Mariana Graña ◽  
Alvaro Herráez

The swampland is the set of seemingly consistent low-energy effective field theories that cannot be consistently coupled to quantum gravity. In this review we cover some of the conjectural properties that effective theories should possess in order not to fall in the swampland, and we give an overview of their main applications to particle physics. The latter include predictions on neutrino masses, bounds on the cosmological constant, the electroweak and QCD scales, the photon mass, the Higgs potential and some insights about supersymmetry.


2002 ◽  
Vol 66 (2) ◽  
Author(s):  
Koji Hashimoto ◽  
Satoshi Nagaoka
Keyword(s):  

2002 ◽  
Vol 28 (6) ◽  
pp. 1179-1189 ◽  
Author(s):  
Antonio O Bouzas ◽  
Rub$eacute$n Flores-Mendieta

2015 ◽  
Vol 30 (09) ◽  
pp. 1530023 ◽  
Author(s):  
Stanisław D. Głazek

Ken Wilson developed powerful renormalization group procedures for constructing effective theories and solving a broad class of difficult physical problems. His insights allowed him to later advance the Hamiltonian approach to quantum dynamics of particles and fields in the Minkowski space–time, motivated by QCD. The latter advances are described in this article, concluding with a remark on Ken's related interest in difficult systemic issues of society.


Sign in / Sign up

Export Citation Format

Share Document