scholarly journals Amplitude Equations for Spdes: Approximate Centre Manifolds and Invariant Measures

Author(s):  
Dirk Blömker ◽  
Martin Hairer
2003 ◽  
Vol 10 (2) ◽  
pp. 247-255
Author(s):  
A. Kharazishvili

Abstract A method of extending σ-finite quasi-invariant measures given on an uncountable group, by using a certain family of its subgroups, is investigated.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Sergey Kryzhevich ◽  
Viktor Avrutin ◽  
Nikita Begun ◽  
Dmitrii Rachinskii ◽  
Khosro Tajbakhsh

We studied topological and metric properties of the so-called interval translation maps (ITMs). For these maps, we introduced the maximal invariant measure and demonstrated that an ITM, endowed with such a measure, is metrically conjugated to an interval exchange map (IEM). This allowed us to extend some properties of IEMs (e.g., an estimate of the number of ergodic measures and the minimality of the symbolic model) to ITMs. Further, we proved a version of the closing lemma and studied how the invariant measures depend on the parameters of the system. These results were illustrated by a simple example or a risk management model where interval translation maps appear naturally.


1997 ◽  
Vol 7 (5) ◽  
pp. 917-935 ◽  
Author(s):  
E. Glasner ◽  
B. Weiss

1996 ◽  
Vol 06 (09) ◽  
pp. 1665-1671 ◽  
Author(s):  
J. BRAGARD ◽  
J. PONTES ◽  
M.G. VELARDE

We consider a thin fluid layer of infinite horizontal extent, confined below by a rigid plane and open above to the ambient air, with surface tension linearly depending on the temperature. The fluid is heated from below. First we obtain the weakly nonlinear amplitude equations in specific spatial directions. The procedure yields a set of generalized Ginzburg–Landau equations. Then we proceed to the numerical exploration of the solutions of these equations in finite geometry, hence to the selection of cells as a result of competition between the possible different modes of convection.


1995 ◽  
Vol 24 (3) ◽  
pp. 323-336 ◽  
Author(s):  
Phil Diamond ◽  
Peter Kloeden ◽  
Alexei Pokrovskii
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document