2007 ◽  
Vol 36 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Wolfgang Lutz ◽  
Niklaus Stulz ◽  
David W. Smart ◽  
Michael J. Lambert

Zusammenfassung. Theoretischer Hintergrund: Im Rahmen einer patientenorientierten Psychotherapieforschung werden Patientenausgangsmerkmale und Veränderungsmuster in einer frühen Therapiephase genutzt, um Behandlungsergebnisse und Behandlungsdauer vorherzusagen. Fragestellung: Lassen sich in frühen Therapiephasen verschiedene Muster der Veränderung (Verlaufscluster) identifizieren und durch Patientencharakteristika vorhersagen? Erlauben diese Verlaufscluster eine Vorhersage bezüglich Therapieergebnis und -dauer? Methode: Anhand des Growth Mixture Modeling Ansatzes wurden in einer Stichprobe von N = 2206 ambulanten Patienten einer US-amerikanischen Psychotherapieambulanz verschiedene latente Klassen des frühen Therapieverlaufs ermittelt und unter Berücksichtigung unterschiedlicher Patientenausgangscharakteristika als Prädiktoren der frühen Veränderungen mit dem Therapieergebnis und der Therapiedauer in Beziehung gesetzt. Ergebnisse: Für leicht, mittelschwer und schwer beeinträchtigte Patienten konnten je vier unterschiedliche Verlaufscluster mit jeweils spezifischen Prädiktoren identifiziert werden. Die Identifikation der frühen Verlaufsmuster ermöglichte weiterhin eine spezifische Vorhersage für die unterschiedlichen Verlaufscluster bezüglich des Therapieergebnisses und der Therapiedauer. Schlussfolgerungen: Frühe Psychotherapieverlaufsmuster können einen Beitrag zu einer frühzeitigen Identifikation günstiger sowie ungünstiger Therapieverläufe leisten.


2010 ◽  
Author(s):  
Carol L. Barry ◽  
Pamela Kaliski
Keyword(s):  

2020 ◽  
Vol 32 (10) ◽  
pp. 915-927
Author(s):  
Marija Volarov ◽  
Nicholas P. Allan ◽  
Ljiljana Mihić

2021 ◽  
pp. 1-14
Author(s):  
Tiffany M. Shader ◽  
Theodore P. Beauchaine

Abstract Growth mixture modeling (GMM) and its variants, which group individuals based on similar longitudinal growth trajectories, are quite popular in developmental and clinical science. However, research addressing the validity of GMM-identified latent subgroupings is limited. This Monte Carlo simulation tests the efficiency of GMM in identifying known subgroups (k = 1–4) across various combinations of distributional characteristics, including skew, kurtosis, sample size, intercept effect size, patterns of growth (none, linear, quadratic, exponential), and proportions of observations within each group. In total, 1,955 combinations of distributional parameters were examined, each with 1,000 replications (1,955,000 simulations). Using standard fit indices, GMM often identified the wrong number of groups. When one group was simulated with varying skew and kurtosis, GMM often identified multiple groups. When two groups were simulated, GMM performed well only when one group had steep growth (whether linear, quadratic, or exponential). When three to four groups were simulated, GMM was effective primarily when intercept effect sizes and sample sizes were large, an uncommon state of affairs in real-world applications. When conditions were less ideal, GMM often underestimated the correct number of groups when the true number was between two and four. Results suggest caution in interpreting GMM results, which sometimes get reified in the literature.


Sign in / Sign up

Export Citation Format

Share Document