Efficient 2D Linear-Phase IIR Filter Design and Application in Image Processing

Author(s):  
Chi-Un Lei ◽  
Chung-Man Cheung ◽  
Ngai Wong
2015 ◽  
Vol 28 (4) ◽  
pp. 611-623 ◽  
Author(s):  
Aleksandar Radonjic ◽  
Jelena Certic

In this paper a detailed analysis of an atypical filter structure in MATLAB Filter Design and Analysis (FDA) Tool is presented. As an example of atypical filter structure, the IIR half-band filter with approximately linear phase realized as a parallel connection of two all-pass branches was examined. We compare two types of those filters obtained by two different design algorithms. FDA tool was used for the experiment because different effects of the fixed point implementation can be simulated easily. One of the goals of this paper was to compare results obtained by two different design algorithms. In addition, different realizations of the filter structure based on the parallel connection of two all-pass branches were examined.


2010 ◽  
Vol 56 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Jacek Konopacki ◽  
Katarzyna Mościńska

A Procedure for Quasi-Equiripple Linear-Phase IIR Filters DesignThe linear-phase IIR filters are described in many cases, mainly due to distortion-free transmission of signals. One of the major problems of IIR filter design is stability, which can be obtained with suitable value of group delay τ. This paper concerns calculation of filter orderNand group delay τ in case of quasi-equiripple design of IIR filters. We propose a novel procedure for determiningNand τ values; the procedure is valid for all types of filters with arbitrary number of zeros and a few non-zero poles. Evaluation of the proposed approach as well as examples illustrating its application are provided in the paper.


Circuit World ◽  
2019 ◽  
Vol 45 (3) ◽  
pp. 169-178 ◽  
Author(s):  
Hiren K. Mewada ◽  
Jitendra Chaudhari

Purpose The digital down converter (DDC) is a principal component in modern communication systems. The DDC process traditionally entails quadrature down conversion, bandwidth reducing filters and commensurate sample rate reduction. To avoid group delay, distortion linear phase FIR filters are used in the DDC. The filter performance specifications related to deep stopband attenuation, small in-band ripple and narrow transition bandwidth lead to filters with a large number of coefficients. To reduce the computational workload of the filtering process, filtering is often performed as a two-stage process, the first stage being a down sampling Hoegenauer (or cascade-integrated comb) filter and a reduced sample rate FIR filter. An alternative option is an M-Path polyphase partition of a band cantered FIR filter. Even though IIR filters offer reduced workload to implement a specific filtering task, the authors avoid using them because of their poor group delay characteristics. This paper aims to propose the design of M-path, approximately linear phase IIR filters as an alternative option to the M-path FIR filter. Design/methodology/approach Two filter designs are presented in the paper. The first approach uses linear phase IIR low pass structure to reduce the filter’s coefficient. Whereas the second approach uses multipath polyphase structure to design approximately linear phase IIR filter in DDC. Findings The authors have compared the performance and workload of the proposed polyphase structured IIR filters with state-of-the-art filter design used in DDC. The proposed design is seen to satisfy tight design specification with a significant reduction in arithmetic operations and required power consumption. Originality/value The proposed design is an alternate solution to the M-path polyphase FIR filter offering very less number of coefficients in the filter design. Proposed DDC using polyphase structured IIR filter satisfies the requirement of linear phase with the least number of computation cost in comparison with other DDC structure.


2021 ◽  
pp. 1-14
Author(s):  
Sachin Sharma ◽  
Vineet Kumar ◽  
K.P.S. Rana

Generally, the process industry is affected by unwanted fluctuations in control loops arising due to external interference, components with inherent nonlinearities or aggressively tuned controllers. These oscillations lead to production of substandard products and thus affect the overall profitability of a plant. Hence, timely detection of oscillations is desired for ensuring safety and profitability of the plant. In order to achieve this, a control loop oscillation detection and quantification algorithm using Prony method of infinite impulse response (IIR) filter design and deep neural network (DNN) has been presented in this work. Denominator polynomial coefficients of the obtained IIR filter using Prony method were used as the feature vector for DNN. Further, DNN is used to confirm the existence of oscillations in the process control loop data. Furthermore, amplitude and frequency of oscillations are also estimated with the help of cross-correlation values, computed between the original signal and estimated error signal. Experimental results confirm that the presented algorithm is capable of detecting the presence of single or multiple oscillations in the control loop data. The proposed algorithm is also able to estimate the frequency and amplitude of detected oscillations with high accuracy. The Proposed method is also compared with support vector machine (SVM) and empirical mode decomposition (EMD) based approach and it is found that proposed method is faster and more accurate than the later.


Sign in / Sign up

Export Citation Format

Share Document