Maximizing Photosynthetic Productivity and Light Utilization in Microalgae by Minimizing the Light-Harvesting Chlorophyll Antenna Size of the Photosystems

BioHydrogen ◽  
2007 ◽  
pp. 41-52 ◽  
Author(s):  
Anastasios Melis ◽  
John Neidhardt ◽  
Irene Baroli ◽  
John R. Benemann
2012 ◽  
Vol 367 (1608) ◽  
pp. 3430-3443 ◽  
Author(s):  
Mautusi Mitra ◽  
Henning Kirst ◽  
David Dewez ◽  
Anastasios Melis

Truncated light-harvesting antenna 1 ( TLA1 ) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii . The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene.


2016 ◽  
Vol 28 (6) ◽  
pp. 3193-3202 ◽  
Author(s):  
Won-Sub Shin ◽  
Bongsoo Lee ◽  
Byeong-ryool Jeong ◽  
Yong Keun Chang ◽  
Jong-Hee Kwon

Light-induced absorbance change and fluorescence measurements were employed in the quantitation of photosystem stoichiometry and in the measurement of the chlorophyll (Chl) antenna size in thylakoid membranes. Results with thylakoid membranes from diverse photosynthetic tissues indicated a PSII/PSI reaction-centre stoichiometry that deviates from unity. Cyanobacteria and red algae have a PSII/PSI ratio in the range of 0.3 to 0.7. Chloroplasts from spinach and other vascular-plant species grown under direct sunlight have PSII/PSI = 1.8±0.3. Chlorophyll b -deficient and Chi b -lacking mutants have PSII/PSI > 2. The observation that PSII/PSI ratios are not unity and show a large variation among different photosynthetic membranes appears to be contrary to the conventional assumption derived from the Z-scheme. However, the photosystem stoichiometry is not the only factor that needs to be taken into account to explain the coordination of the two photosystems in the process of linear electron transport. The light-harvesting capacity of each photosystem must also be considered. In cyanobacterial thylakoids (from Synechococcus 6301, PSII/PSI = 0.5±0.2), the phycobilisome-PSII complexes collectively harvest as much light as the PSI complexes. In vascular plant chloroplasts, the light-harvesting capacity of a PSI I complex (250 molecules, Chi a/Chi b = 1.7) is lower than that of a PSI complex (230 Chl, Chl a /Chl b = 8.0) because Chi b has a lower extinction coefficient than Chi a . A differential attenuation of light intensity through the grana further reduces the light absorbed by PSII. Hence, a PSII/PSI ratio greater than one in vascular-plant chloroplasts compensates for the lower absorption of light by individual PSII complexes and ensures that, on average, PSII will harvest about as much light as PSI. In conclusion, distinct light-harvesting strategies among diverse plant species complement widely different photosystem stoichiometries to ensure a balanced absorption of light and a balanced electron flow between the two photoreactions, thereby satisfying the requirement set forth upon the formulation of the Z-scheme by Hill & Bendall ( Nature, Lond. 186, 136-137 (1960)) and by Duysens, Amesz & Kamp ( Nature, Lond . 190, 510-511 (1961)).


Sign in / Sign up

Export Citation Format

Share Document