Basics of the Theory of Self-adjoint Extensions of Symmetric Operators

Author(s):  
D. M. Gitman ◽  
I. V. Tyutin ◽  
B. L. Voronov
Keyword(s):  
2019 ◽  
Vol 16 (4) ◽  
pp. 567-587
Author(s):  
Vadim Mogilevskii

Let $A$ be a symmetric linear relation in the Hilbert space $\gH$ with unequal deficiency indices $n_-A <n_+(A)$. A self-adjoint linear relation $\wt A\supset A$ in some Hilbert space $\wt\gH\supset \gH$ is called an (exit space) extension of $A$. We study the compressions $C (\wt A)=P_\gH\wt A\up\gH$ of extensions $\wt A=\wt A^*$. Our main result is a description of compressions $C (\wt A)$ by means of abstract boundary conditions, which are given in terms of a limit value of the Nevanlinna parameter $\tau(\l)$ from the Krein formula for generalized resolvents. We describe also all extensions $\wt A=\wt A^*$ of $A$ with the maximal symmetric compression $C (\wt A)$ and all extensions $\wt A=\wt A^*$ of the second kind in the sense of M.A. Naimark. These results generalize the recent results by A. Dijksma, H. Langer and the author obtained for symmetric operators $A$ with equal deficiency indices $n_+(A)=n_-(A)$.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


1989 ◽  
Vol 41 (10) ◽  
pp. 1117-1129 ◽  
Author(s):  
V. I. Gorbachuk ◽  
M. L. Gorbachuk ◽  
A. N. Kochubei

2021 ◽  
Vol 18 (3) ◽  
Author(s):  
Pietro Aiena ◽  
Fabio Burderi ◽  
Salvatore Triolo

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.


2012 ◽  
Vol 140 (5) ◽  
pp. 1705-1708 ◽  
Author(s):  
Sen Zhu ◽  
Chun Guang Li ◽  
You Qing Ji

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Ibtisam Aldawish

AbstractSymmetric operators have benefited in different fields not only in mathematics but also in other sciences. They appeared in the studies of boundary value problems and spectral theory. In this note, we present a new symmetric differential operator associated with a special class of meromorphically multivalent functions in the punctured unit disk. This study explores some of its geometric properties. We consider a new class of analytic functions employing the suggested symmetric differential operator.


Positivity ◽  
2005 ◽  
Vol 9 (1) ◽  
pp. 97-114 ◽  
Author(s):  
F. O. Farid

2018 ◽  
Vol 12 (4) ◽  
pp. 995-1016 ◽  
Author(s):  
Sergii Kuzhel ◽  
Leonid Nizhnik
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document