Genetically Directed Sparse Labeling System for Anatomical Studies of Retinal Ganglion Cells

Author(s):  
Leila Jamal ◽  
Takae Kiyama ◽  
Chai-An Mao
2021 ◽  
pp. 112067212110490
Author(s):  
Yuanfei Ji ◽  
Bo Yu ◽  
Yikui Zhang ◽  
Wencan Wu

Purpose To explore the optimized concentration of AAV2-GFP for sparse transfection of retinal ganglion cells (RGCs) and optic nerve (ON), and to examine the changes of microglial morphology and distribution in the retina, optic nerve and chiasm after injection. Methods We defined the optimal concentration of AAV2-GFP for sparse labeling of RGCs and axons in WT mice. We further explored the changes of microglial morphology and distribution in the retina, optic nerve and chiasm after intravitreal injection in CX3CR1+/GFP mice. Results 14 days after intravitreal injection of AAV2-GFP, live imaging of the retina showed that fundus fluorescence was very strong and dense at 2.16 × 1011 VG/retina, 2.16 × 1010 VG/retina, 2.16 × 109 VG/retina. RGCs were sparsely marked at a concentration 1:1000 (2.16 × 108 VG/retina) and fundus fluorescence was weak. The transfected RGCs and axons were unevenly distributed in the retina and significantly more RGCs were transfected near the injection site of AAV2-GFP compared to the other sites of the flat-mounted retina. Microglia density increased significantly in the retina and part of optic nerve, but not in the optic chiasm. The morphology of microglia was largely unchanged. Conclusions AAV2-GFP was highly efficient and the optimal concentration of sparsely labeled RGCs was 1:1000 (2.16 × 108 VG/retina). After intravitreal injection of AAV2-GFP, the number of microglia increased partly. The morphology of microglia was comparable.


Author(s):  
Kyril I. Kuznetsov ◽  
Vitaliy Yu. Maslov ◽  
Svetlana A. Fedulova ◽  
Nikolai S. Veselovsky

Sign in / Sign up

Export Citation Format

Share Document