Identifying Cyclin A/Cdk1 Substrates in Mitosis in Human Cells

Author(s):  
Ana Maria G. Dumitru ◽  
Duane A. Compton
Keyword(s):  
Cyclin A ◽  
2000 ◽  
Vol 113 (11) ◽  
pp. 1929-1938 ◽  
Author(s):  
D. Coverley ◽  
C. Pelizon ◽  
S. Trewick ◽  
R.A. Laskey

Cdc6 is essential for the initiation of DNA replication in all organisms in which it has been studied. In addition, recombinant Cdc6 can stimulate initiation in G(1) nuclei in vitro. We have analysed the behaviour of recombinant Cdc6 in mammalian cell extracts under in vitro replication conditions. We find that Cdc6 is imported into the nucleus in G(1)phase, where it binds to chromatin and remains relatively stable. In S phase, exogenous Cdc6 is destroyed in a process that requires import into the nucleus and phosphorylation by a chromatin-bound protein kinase. Recombinant cyclin A-cdk2 can completely substitute for the nucleus in promoting destruction of soluble Xenopus and human Cdc6. Despite this regulated destruction, endogenous Cdc6 persists in the nucleus after initiation, although the amount falls. Cdc6 levels remain constant in G(2) then fall again before mitosis. We propose that cyclin A-cdk2 phosphorylation results in destruction of any Cdc6 not assembled into replication complexes, but that assembled proteins remain, in the phosphorylated state, in the nucleus. This process could contribute to the prevention of reinitiation in human cells by making free Cdc6 unavailable for re-assembly into replication complexes after G(1) phase.


2007 ◽  
Vol 18 (11) ◽  
pp. 4457-4469 ◽  
Author(s):  
Christopher Kasbek ◽  
Ching-Hui Yang ◽  
Adlina Mohd Yusof ◽  
Heather M. Chapman ◽  
Mark Winey ◽  
...  

Supernumerary centrosomes promote the assembly of abnormal mitotic spindles in many human tumors. In human cells, overexpression of the cyclin-dependent kinase (Cdk)2 partner cyclin A during a prolonged S phase produces extra centrosomes, called centrosome reduplication. Cdk2 activity protects the Mps1 protein kinase from proteasome-mediated degradation, and we demonstrate here that Mps1 mediates cyclin A-dependent centrosome reduplication. Overexpression of cyclin A or a brief proteasome inhibition increases the centrosomal levels of Mps1, whereas depletion of Cdk2 leads to the proteasome-dependent loss of Mps1 from centrosomes only. When a Cdk2 phosphorylation site within Mps1 (T468) is mutated to alanine, Mps1 cannot accumulate at centrosomes or participate in centrosome duplication. In contrast, phosphomimetic mutations at T468 or deletion of the region surrounding T468 prevent the proteasome-dependent removal of Mps1 from centrosomes in the absence of Cdk2 activity. Moreover, cyclin A-dependent centrosome reduplication requires Mps1, and these stabilizing Mps1 mutations cause centrosome reduplication, bypassing cyclin A. Together, our data demonstrate that the region surrounding T468 contains a motif that regulates the accumulation of Mps1 at centrosomes. We suggest that phosphorylation of T468 attenuates the degradation of Mps1 at centrosomes and that preventing this degradation is necessary and sufficient to cause centrosome reduplication in human cells.


Oncogene ◽  
2004 ◽  
Vol 23 (19) ◽  
pp. 3361-3367 ◽  
Author(s):  
Jayashree Mitra ◽  
Greg H Enders
Keyword(s):  
Cyclin A ◽  

Cell Cycle ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 84-96 ◽  
Author(s):  
Yasunori Akaike ◽  
Taku Chibazakura
Keyword(s):  
Cyclin A ◽  

Cell Cycle ◽  
2006 ◽  
Vol 5 (6) ◽  
pp. 662-667 ◽  
Author(s):  
Jayashree Mitra ◽  
Greg H. Enders ◽  
Jane Azizkhan-Clifford ◽  
Kathleen L. Lengel

1999 ◽  
Vol 19 (1) ◽  
pp. 646-656 ◽  
Author(s):  
Christian Voitenleitner ◽  
Christoph Rehfuess ◽  
Melissa Hilmes ◽  
Lynda O’Rear ◽  
Pao-Chi Liao ◽  
...  

ABSTRACT DNA polymerase α-primase is known to be phosphorylated in human and yeast cells in a cell cycle-dependent manner on the p180 and p68 subunits. Here we show that phosphorylation of purified human DNA polymerase α-primase by purified cyclin A/cdk2 in vitro reduced its ability to initiate simian virus 40 (SV40) DNA replication in vitro, while phosphorylation by cyclin E/cdk2 stimulated its initiation activity. Tryptic phosphopeptide mapping revealed a family of p68 peptides that was modified well by cyclin A/cdk2 and poorly by cyclin E/cdk2. The p180 phosphopeptides were identical with both kinases. By mass spectrometry, the p68 peptide family was identified as residues 141 to 160. Cyclin A/cdk2- and cyclin A/cdc2-modified p68 also displayed a phosphorylation-dependent shift to slower electrophoretic mobility. Mutation of the four putative phosphorylation sites within p68 peptide residues 141 to 160 prevented its phosphorylation by cyclin A/cdk2 and the inhibition of replication activity. Phosphopeptide maps of the p68 subunit of DNA polymerase α-primase from human cells, synchronized and labeled in G1/S and in G2, revealed a cyclin E/cdk2-like pattern in G1/S and a cyclin A/cdk2-like pattern in G2. The slower-electrophoretic-mobility form of p68 was absent in human cells in G1/S and appeared as the cells entered G2/M. Consistent with this, the ability of DNA polymerase α-primase isolated from synchronized human cells to initiate SV40 replication was maximal in G1/S, decreased as the cells completed S phase, and reached a minimum in G2/M. These results suggest that the replication activity of DNA polymerase α-primase in human cells is regulated by phosphorylation in a cell cycle-dependent manner.


1993 ◽  
Vol 268 (11) ◽  
pp. 8298-8308
Author(s):  
P.M. O'Connor ◽  
D.K. Ferris ◽  
M. Pagano ◽  
G. Draetta ◽  
J. Pines ◽  
...  

2002 ◽  
Vol 72 (3) ◽  
pp. 147-153 ◽  
Author(s):  
Kei-Ichi Hirai ◽  
Jie-Hong Pan ◽  
Ying-Bo Shui ◽  
Eriko Simamura ◽  
Hiroki Shimada ◽  
...  

The possible protection of cultured human cells from acute dioxin injury by antioxidants was investigated. The most potent dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), caused vacuolization of the smooth endoplasmic reticulum and Golgi apparatus in cultured human conjunctival epithelial cells and cervical cancer cells. Subsequent nuclear damage included a deep irregular indentation resulting in cell death. A dosage of 30–40 ng/mL TCDD induced maximal intracellular production of H2O2 at 30 minutes and led to severe cell death (0–31% survival) at two hours. A dose of 1.7 mM alpha-tocopherol or 1 mM L-dehydroascorbic acid significantly protected human cells against acute TCDD injuries (78–97% survivals), but vitamin C did not provide this protection. These results indicate that accidental exposure to fatal doses of TCDD causes cytoplasmic free radical production within the smooth endoplasmic reticular systems, resulting in severe cytotoxicity, and that vitamin E and dehydroascorbic acid can protect against TCDD-induced cell damage.


2003 ◽  
Vol 104 ◽  
pp. 289-292 ◽  
Author(s):  
R. Ortega ◽  
B. Fayard ◽  
M. Salomé ◽  
G. Devès ◽  
J. Susini

Sign in / Sign up

Export Citation Format

Share Document