The Role of the Sumoylation Pathway in Transient and Stable Recombinant Protein Expression in Chinese Hamster Ovary Cells

2007 ◽  
pp. 129-132
Author(s):  
Martin Bertschinger ◽  
David Hacker ◽  
Florian Wurm
Author(s):  
Huan-Yu Zhang ◽  
Zhen-Lin Fan ◽  
Tian-Yun Wang

As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can express various recombinant proteins with a post translational modification pattern similar to that of the proteins from human cells. During industrial production, cells need large amounts of ATP to support growth and protein expression, and since glycometabolism is the main source of ATP for cells, protein production partly depends on the efficiency of glycometabolism. And efficient glycometabolism allows less glucose uptake by cells, reducing production costs, and providing a better mammalian production platform for recombinant protein expression. In the present study, a series of progresses on the comprehensive optimization in CHO cells by glycometabolism strategy were reviewed, including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We analyzed the effects of gene regulation in the upstream and downstream of the glucose metabolism pathway on cell’s growth and protein expression. And we also pointed out the latest metabolic studies that are potentially applicable on CHO cells. In the end, we elaborated the application of metabolic models in the study of CHO cell metabolism.


1982 ◽  
Vol 79 (2) ◽  
pp. 534-538 ◽  
Author(s):  
L. H. Thompson ◽  
K. W. Brookman ◽  
A. V. Carrano ◽  
L. E. Dillehay

Sign in / Sign up

Export Citation Format

Share Document