recombinant protein expression
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 118)

H-INDEX

39
(FIVE YEARS 6)

Author(s):  
Qi Xie ◽  
Yin Wang ◽  
Mengmeng Zhang ◽  
Shujia Wu ◽  
Wei Wei ◽  
...  

Human neutrophil peptide-1 (HNP-1) is a promising antibiotic candidate, but its clinical application has been hampered by the difficulty of mass production and an inadequate understanding of its bactericidal mechanisms. In this study, we demonstrated that recombinant protein expression combined with ultrafiltration may be a simple and cost-effective solution to HNP-1 production.


2022 ◽  
Vol 12 ◽  
Author(s):  
Thomas Klaus ◽  
Sabrina Ninck ◽  
Andreas Albersmeier ◽  
Tobias Busche ◽  
Daniel Wibberg ◽  
...  

Activity-based protein profiling (ABPP) has so far scarcely been applied in Archaea in general and, especially, in extremophilic organisms. We herein isolated a novel Thermococcus strain designated sp. strain 2319x1E derived from the same enrichment culture as the recently reported Thermococcus sp. strain 2319x1. Both strains are able to grow with xylan as the sole carbon and energy source, and for Thermococcus sp. strain 2319x1E (optimal growth at 85°C, pH 6–7), the induction of xylanolytic activity in the presence of xylan was demonstrated. Since the solely sequence-based identification of xylanolytic enzymes is hardly possible, we established a complementary approach by conducting comparative full proteome analysis in combination with ABPP using α- or β-glycosidase selective probes and subsequent mass spectrometry (MS)-based analysis. This complementary proteomics approach in combination with recombinant protein expression and classical enzyme characterization enabled the identification of a novel bifunctional maltose-forming α-amylase and deacetylase (EGDIFPOO_00674) belonging to the GH57 family and a promiscuous β-glycosidase (EGIDFPOO_00532) with β-xylosidase activity. We thereby further substantiated the general applicability of ABPP in archaea and expanded the ABPP repertoire for the identification of glycoside hydrolases in hyperthermophiles.


Author(s):  
Shinto James ◽  
Vikas Jain

We introduce OLIVAR (Orientation seLection of Insert in Vector through Antisense Reporter) as a novel selection strategy for the insertion of protein-coding genes into vector backbones. As a proof-of-concept, we have engineered a plasmid vector, pGRASS (Green fluorescent protein Reporter from Antisense promoter-based Screening System), for gene cloning in E. coli. With pGRASS, positive clones can be effortlessly distinguished from negative clones after blunt-end cloning. The vector not only screens clones with an insert but also for its correct orientation. The design further allows for the expression of recombinant protein from the T7 promoter in an appropriate host bacterium. With this vector, we are able to reduce the entire cloning workflow into a single step involving a 2-h reaction at room temperature. We believe that our cloning-cum-screening system presented here is extremely cost-effective and straightforward and can be applied to other vector systems and domains such as phage display and library construction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiawei Xiao ◽  
Jiancheng Jiang ◽  
Xianjing He ◽  
Siyao Zhang ◽  
Zhihui Wang ◽  
...  

We evaluated the efficacy of three vaccine formulations containing different combinations of proteins (43K OMP, leukotoxin recombinant protein PL4 and hemolysin recombinant protein H2) and killed whole cell Fusobacterium necrophorum in preventing liver abscess. Four subcutaneous vaccines were formulated: vaccine 1 (43K OMP), vaccine 2 (PL4 and H2), vaccine 3 (43K OMP, PL4 and H2), and vaccine 4 (killed whole bacterial cell). 43K OMP, PL4, and H2 proteins were produced by using recombinant protein expression. To evaluate vaccine efficacy, we randomly allocated 50 BALB/c female mice to one of five different treatment groups: PBS control group, vaccine 1, vaccine 2, vaccine 3, and vaccine 4. Mice were vaccinated three times, with 14 days between each immunization. After immunization, the mice were challenged with F. necrophorum. The three key findings of this study are as follows: (1) Vaccine 3 has enabled mice to produce higher antibody titer following bacterial challenge, (2) in the liver pathology of mice, the vaccine 3 liver showed the least pathology, and (3) all four vaccines produced high levels of antibodies and cytokines in mice, but the level of vaccine 3 was the highest. Based on our results, it has been demonstrated that a mixture of F. necrophorum 43K OMP, PL4, and H2 proteins inoculated with mice can achieve protection against liver abscess in mice. Our research may therefore provide the basis for the development of a vaccine against F. necrophorum bovine infections.


Author(s):  
Huan-Yu Zhang ◽  
Zhen-Lin Fan ◽  
Tian-Yun Wang

As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can express various recombinant proteins with a post translational modification pattern similar to that of the proteins from human cells. During industrial production, cells need large amounts of ATP to support growth and protein expression, and since glycometabolism is the main source of ATP for cells, protein production partly depends on the efficiency of glycometabolism. And efficient glycometabolism allows less glucose uptake by cells, reducing production costs, and providing a better mammalian production platform for recombinant protein expression. In the present study, a series of progresses on the comprehensive optimization in CHO cells by glycometabolism strategy were reviewed, including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We analyzed the effects of gene regulation in the upstream and downstream of the glucose metabolism pathway on cell’s growth and protein expression. And we also pointed out the latest metabolic studies that are potentially applicable on CHO cells. In the end, we elaborated the application of metabolic models in the study of CHO cell metabolism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Zou ◽  
Sha Li ◽  
Nan Li ◽  
Shi-Long Ruan ◽  
Jing Chen ◽  
...  

Escherichia coli has been developed as the most common host for recombinant protein expression. Unfortunately, there are still some proteins that are resistant to high levels of heterologous soluble expression in E. coli. Protein and peptide fusion tags are one of the most important methods for increasing target protein expression and seem to influence the expression efficiency and solubility as well. In this study, we identify a short 15-residue enhancing solubility peptide, the PCDS (protocatechuate 3,4-dioxygenase solubility) tag, which enhances heterologous protein expression in E. coli. This PCDS tag is a 45-bp long sequence encoding a peptide tag involved in the soluble expression of protocatechuate 3,4-dioxygenase, encoded by the pcaHG98 genes of Pseudomonas putida NCIMB 9866. The 45-bp sequence was also beneficial for pcaHG98 gene amplification. This tag was shown to be necessary for the heterologous soluble expression of PcaHG98 in E. coli. Purified His6-PcaHG98e04-PCDS exhibited an activity of 205.63±14.23U/mg against protocatechuate as a substrate, and this activity was not affected by a PCDS tag. This PCDS tag has been fused to the mammalian yellow fluorescent protein (YFP) to construct YFP-PCDS without its termination codons and YFPt-PCDS with. The total protein expressions of YFP-PCDS and YFPt-PCDS were significantly amplified up to 1.6-fold and 2-fold, respectively, compared to YFP alone. Accordingly, His6-YFP-PCDS and His6-YFPt-PCDS had 1.6-fold and 3-fold higher soluble protein yields, respectively, than His6-YFP expressed under the same conditions. His6-YFP, His6-YFP-PCDS, and His6-YFPt-PCDS also showed consistent fluorescence emission spectra, with a peak at 530nm over a scanning range from 400 to 700nm. These results indicated that the use of the PCDS tag is an effective way to improve heterologous protein expression in E. coli.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12497
Author(s):  
Fei Shang ◽  
Hui Wang ◽  
Dan Zhang ◽  
Wenhui Wang ◽  
Jiangliu Yu ◽  
...  

Background The pET expression system based on T7 promoter which is induced by isopropyl-β-D-1-thiogalactopyranoside (IPTG) is by far the most commonly used system for production of heterogeneous proteins in Escherichia coli. However, this system was limited by obvious drawbacks including the host toxicity and metabolic burden imposed by the presence of IPTG. Methods In this study, we incorporated the autoinducer-2 (AI-2) quorum sensing system to realize autoinduction of the pET expression system. The autoinduction expression vector pXWZ1 was constructed by inserting the lsr promoter regions into the pET28a(+) vector. The expression efficiency of the reporter genes gfpuv and lacZ by the pXWZ1 and pET28a(+) vectors were compared. Results The results showed that the expression levels of the both report genes in the cells transformed with pXWZ1 without any addition of exogenous inducer were higher than that transformed with pET28a(+) vectors by the induction of IPTG. Conclusion This new auto-induction system will exclude the limitations of the IPTG induction including toxic to host and increasing formation of inclusion body and will become a more economical and convenient tool for recombinant protein expression.


2021 ◽  
Author(s):  
Maira Rivera ◽  
Javiera Reyes ◽  
Paula Blazquez-Sanchez ◽  
Cesar A Ramirez-Sarmiento

This protocol has been optimized for the recombinant expression of a codon-optizimed Pfu-Sso7d DNA polymerase. This is a fusion protein composed of the Pfu enzyme from Pyrococcus furiosus for DNA amplification by PCR fused to a small 7 kDa protein from Sulfobulus solfataricus that binds to double-stranded DNA without any preference for specific sequences, thus enhancing polymerization processivity without affecting the catalytic activity or thermal stability of the enzyme. The goal of this protocol was to eliminate the use of large volumes for dyalisis and potential issues with the protein crashing out of the solution due to the use of concentrators for buffer exchange of this enzyme into storage conditions. We also eliminated the use of DTT, which is often found in other similar protocols. The sequence plasmid encoding the codon-optimized Pfu-Sso7d enzyme used here can be found at https://benchling.com/s/seq-2TcUPjO2uMbDG5ufTQN4


Sign in / Sign up

Export Citation Format

Share Document