Ipm of Soybean Cyst Nematode in The Usa

Author(s):  
Gregory R. Noel
2009 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Allen Wrather ◽  
Steve Koenning

Research must focus on management of diseases that cause extensive losses, especially when funds for research are limited. Knowledge of yield suppression caused by various soybean diseases is essential when prioritizing research. The objective of this project was to compile estimates of soybean yield suppression due to diseases in the USA from 1996 to 2007. The goal was to provide information to help funding agencies and scientists prioritize research objectives and budgets. Yield suppression due to individual diseases varied among years. Soybean cyst nematode suppressed USA soybean yield more from 1996 to 2007 than any other disease. Phytophthora root and stem rot ranked second among diseases that most suppressed yield seven of 12 years. Seedling diseases and charcoal rot also suppressed soybean yield during these years. Research and extension efforts must be expanded to provide more preventive and therapeutic disease management strategies for producers to reduce disease suppression of soybean yield. Accepted for publication 25 February 2009. Published 1 April 2009.


2021 ◽  
Author(s):  
David Hunt

Abstract The soybean cyst nematode H. glycines is a known major pest of soybean in regions of the USA particularly semi-arid areas. The nematode has now been found as a pest of soybean outside the USA in Argentina, Brazil, Colombia, China, Egypt, Indonesia, Iran, Italy, Japan, Korea, Paraguay and the former Soviet Union. Other hosts include Phaseolus beans. It can survive in a semi-dried state and is easily spread in soil or on plant material. It is a pest in temperate areas and does not develop below 15°C or above 33°C. Once introduced, the populations of the nematode can rapidly increase as it will complete 6-7 generations per growing season.


2014 ◽  
Vol 15 (2) ◽  
pp. 85-87 ◽  
Author(s):  
Gregory L. Tylka ◽  
Christopher C. Marett

The soybean cyst nematode (Heterodera glycines) is considered the most damaging pathogen of soybean in the USA and Canada, and causes considerable yield loss in many other soybean-producing countries. It is believed to have been introduced into North America from Asia. The map of the known distribution of H. glycines in the USA and Canada has been updated for 2014. Maps of its known distribution in past years illustrate the spread of the pathogen since its initial discovery in the United States in 1954. Accepted for publication 20 April 2014. Published 27 May 2014.


2014 ◽  
Vol 95 (6) ◽  
pp. 1272-1280 ◽  
Author(s):  
Sadia Bekal ◽  
Leslie L. Domier ◽  
Biruk Gonfa ◽  
Nancy K. McCoppin ◽  
Kris N. Lambert ◽  
...  

Heterodera glycines, the soybean cyst nematode (SCN), is a subterranean root pathogen that causes the most damaging disease of soybean in the USA. A novel nematode virus genome, soybean cyst nematode virus 5 (SbCNV-5), was identified in RNA sequencing data from SCN eggs and second-stage juveniles. The SbCNV-5 RNA-dependent RNA polymerase and RNA helicase domains had homology to pestiviruses in the family Flaviviridae, suggesting that SbCNV-5 is a positive-polarity ssRNA virus. SbCNV-5 RNA was present in all nematode developmental stages, indicating a transovarial mode of transmission, but is also potentially sexually transmitted via the male. SbCNV-5 was common in SCN laboratory cultures and in nematode populations isolated from the field. Transmission electron microscopy of sections from a female SCN showed virus particles budding from the endoplasmic reticulum and in endosomes. The size of the viral genome was 19 191 nt, which makes it much larger than other known pestiviruses. Additionally, the presence of a methyltransferase in the SbCNV-5 genome is atypical for a pestivirus. When cDNA sequences were mapped to the genome of SbCNV-5, a disproportionate number aligned to the 3′ NTR, suggesting that SbCNV-5 produces a subgenomic RNA, which was confirmed by RNA blot analysis. As subgenomic RNAs and methyltransferases do not occur in pestiviruses, we conclude that SbCNV-5 is a new flavivirus infecting SCNs.


Sign in / Sign up

Export Citation Format

Share Document