Effects of Diseases on Soybean Yields in the United States 1996 to 2007

2009 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Allen Wrather ◽  
Steve Koenning

Research must focus on management of diseases that cause extensive losses, especially when funds for research are limited. Knowledge of yield suppression caused by various soybean diseases is essential when prioritizing research. The objective of this project was to compile estimates of soybean yield suppression due to diseases in the USA from 1996 to 2007. The goal was to provide information to help funding agencies and scientists prioritize research objectives and budgets. Yield suppression due to individual diseases varied among years. Soybean cyst nematode suppressed USA soybean yield more from 1996 to 2007 than any other disease. Phytophthora root and stem rot ranked second among diseases that most suppressed yield seven of 12 years. Seedling diseases and charcoal rot also suppressed soybean yield during these years. Research and extension efforts must be expanded to provide more preventive and therapeutic disease management strategies for producers to reduce disease suppression of soybean yield. Accepted for publication 25 February 2009. Published 1 April 2009.

2017 ◽  
Vol 18 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Tom W. Allen ◽  
Carl A. Bradley ◽  
Adam J. Sisson ◽  
Emmanuel Byamukama ◽  
Martin I. Chilvers ◽  
...  

Annual decreases in soybean (Glycine max L. Merrill) yield caused by diseases were estimated by surveying university-affiliated plant pathologists in 28 soybean-producing states in the United States and in Ontario, Canada, from 2010 through 2014. Estimated yield losses from each disease varied greatly by state or province and year. Over the duration of this survey, soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) was estimated to have caused more than twice as much yield loss than any other disease. Seedling diseases (caused by various pathogens), charcoal rot (caused by Macrophomina phaseolina (Tassi) Goid), and sudden death syndrome (SDS) (caused by Fusarium virguliforme O’Donnell & T. Aoki) caused the next greatest estimated yield losses, in descending order. The estimated mean economic loss due to all soybean diseases, averaged across U.S. states and Ontario from 2010 to 2014, was $60.66 USD per acre. Results from this survey will provide scientists, breeders, governments, and educators with soybean yield-loss estimates to help inform and prioritize research, policy, and educational efforts in soybean pathology and disease management.


2019 ◽  
Vol 109 (10) ◽  
pp. 1710-1719 ◽  
Author(s):  
Mitchell G. Roth ◽  
Zachary A. Noel ◽  
Jie Wang ◽  
Fred Warner ◽  
Adam M. Byrne ◽  
...  

In the United States, sudden death syndrome (SDS) of soybean is caused by the fungal pathogen Fusarium virguliforme and is responsible for important yield losses each year. Understanding the risk of SDS development and subsequent yield loss could provide growers with valuable information for management of this challenging disease. Current management strategies for F. virguliforme use partially resistant cultivars, fungicide seed treatments, and extended crop rotations with diverse crops. The aim of this study was to develop models to predict SDS severity and soybean yield loss using at-planting risk factors to integrate with current SDS management strategies. In 2014 and 2015, field studies were conducted in adjacent fields in Decatur, MI, which were intensively monitored for F. virguliforme and nematode quantities at-planting, plant health throughout the growing season, end-of-season SDS severity, and yield using an unbiased grid sampling scheme. In both years, F. virguliforme and soybean cyst nematode (SCN) quantities were unevenly distributed throughout the field. The distribution of F. virguliforme at-planting had a significant correlation with end-of-season SDS severity in 2015, and a significant correlation to yield in 2014 (P < 0.05). SCN distributions at-planting were significantly correlated with end-of-season SDS severity and yield in 2015 (P < 0.05). Prediction models developed through multiple linear regression showed that F. virguliforme abundance (P < 0.001), SCN egg quantity (P < 0.001), and year (P < 0.01) explained the most variation in end-of-season SDS (R2 = 0.32), whereas end-of-season SDS (P < 0.001) and end-of-season root dry weight (P < 0.001) explained the most variation in soybean yield (R2 = 0.53). Further, multivariate analyses support a synergistic relationship between F. virguliforme and SCN, enhancing the severity of foliar SDS. These models indicate that it is possible to predict patches of SDS severity using at-planting risk factors. Verifying these models and incorporating additional data types may help improve SDS management and forecast soybean markets in response to SDS threats.


2014 ◽  
Vol 15 (2) ◽  
pp. 85-87 ◽  
Author(s):  
Gregory L. Tylka ◽  
Christopher C. Marett

The soybean cyst nematode (Heterodera glycines) is considered the most damaging pathogen of soybean in the USA and Canada, and causes considerable yield loss in many other soybean-producing countries. It is believed to have been introduced into North America from Asia. The map of the known distribution of H. glycines in the USA and Canada has been updated for 2014. Maps of its known distribution in past years illustrate the spread of the pathogen since its initial discovery in the United States in 1954. Accepted for publication 20 April 2014. Published 27 May 2014.


2019 ◽  
Author(s):  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Carl A. Bradley ◽  
Tom W. Allen ◽  
Paul D. Esker

ABSTRACTSoybean (Glycine max L. Merrill) is a key commodity for United States agriculture. Here we analyze the economic impacts of 23 common soybean diseases in 28 soybean-producing states in the U.S., from 1996 to 2016. From 1996 to 2016, the total estimated economic loss due to soybean diseases in the U.S. was $81.39 billion, with $68.98 billion and $12.41 billion accounting for the northern and southern U.S. losses, respectively. Across states and years, soybean cyst nematode, charcoal rot, and seedling diseases were the most economically damaging pathogens/diseases while soybean rust, bacterial blight, and southern blight were the least economically damaging. Significantly positive linear correlation of mean soybean yield loss with the mean state-wide soybean production (MT) and mean soybean yield (kg ha−1) indicated that high production zones are more vulnerable to soybean diseases-associated yield losses. Our findings provide useful insights into how research, policy, and educational efforts should be prioritized in soybean disease management.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mariola Usovsky ◽  
Robert Robbins ◽  
Juliet Fultz Wilkes ◽  
Devany Crippen ◽  
Vijay Shankar ◽  
...  

Plant parasitic nematodes are a major yield-limiting factor of soybean in the United States and Canada. It has been indicated that soybean cyst nematode (SCN, Heterodera glycines Ichinohe) and reniform nematode (RN, Rotylenchulus reniformis Linford and Oliveira) resistance could be genetically related. For many years fragmentary data has shown this relationship. This report evaluates RN reproduction on 418 plant introductions (PIs) selected from the USDA Soybean Germplasm Collection with reported SCN resistance. The germplasm was divided into two tests of 214 PIs reported as resistant, and 204 PIs moderately resistant to SCN. The defining and reporting of RN resistance changed several times in the last 30 years, causing inconsistencies in RN resistance classification among multiple experiments. Comparison of four RN resistance classification methods was performed: (1) ≤10% as compared to the susceptible check, (2) using normalized reproduction index (RI) values, and transformed data (3) log10 (x) and (4) log10 (x+1), in an optimal univariate k-means clustering analysis. The method of transformed data log10 (x) was selected as the most accurate for classification of RN resistance. Among 418 PIs with reported SCN resistance, the log10 (x) method grouped 59 PIs (15%) as resistant, and 130 PIs (31%) as moderately resistant to RN. Genotyping of a subset of the most resistant PIs to both nematode species revealed their strong correlation with rhg1-a allele. This research identified genotypes with resistance to two nematode species and potential new sources of RN resistance that could be valuable to breeders in developing resistant cultivars.


2021 ◽  
Author(s):  
Intiaz Amin Chowdhury ◽  
Guiping Yan ◽  
Addison Plaisance ◽  
sam markell

Soybean cyst nematode (SCN; Heterodera glycines) continues to be the greatest threat to soybean production in the United States. Since host resistance is the primary strategy used to control SCN, knowledge of SCN virulence phenotypes (HG types) is necessary for choosing sources of resistance for SCN management. To characterize SCN virulence phenotypes in North Dakota (ND), a total of 419 soybean fields across 22 counties were sampled during 2015, 2016, and 2017. SCN was detected in 42% of the fields sampled and population densities in these samples ranged from 30 to 92,800 eggs and juveniles per 100 cm3 of soil. The SCN populations from some of the infested fields were virulence phenotyped with seven soybean indicator lines and a susceptible check (Barnes) using the HG type tests. Overall, 73 SCN field populations were successfully virulence phenotyped. The HG types detected in ND were HG type 0 (frequency rate: 36%), 7 (27%), 2.5.7 (19%), 5.7 (11%), 1.2.5.7 (4%), and 2.7 (2%). However, prior to this study only HG type 0 was detected in ND. The designation of each of the HG types detected was then validated in this study by repeating the HG type tests for thirty-three arbitrarily selected samples. This research for the first time reports several new HG types detected in ND and confirms that the virulence of SCN populations is shifting and overcoming resistance, highlighting the necessity of utilization of different resistance sources, rotation of resistance sources, and identification of novel resistance sources for SCN management in ND.


2010 ◽  
Vol 11 (1) ◽  
pp. 5 ◽  
Author(s):  
Stephen R. Koenning ◽  
J. Allen Wrather

Research must focus on management of diseases that cause extensive losses, especially when funds for research are limited. Knowledge of the losses caused by various soybean diseases is essential when prioritizing research budgets. The objective of this project was to compile estimates of soybean yield potential losses caused by diseases for each soybean producing state in the United States from 2006 to 2009. This data is of special interest since the 4-year period summarized in this report, permits an examination of the impact of soybean rust that was first reported in the United States in 2004. Thus, in addition to the goal of providing this information to aid funding agencies and scientists in prioritizing research objectives and budgets, an examination of the impact of soybean rust on soybean yield losses relative to other diseases is warranted. Yield losses caused by individual diseases varied among states and years. Soybean cyst nematode caused more yield losses than any other disease during 2006 to 2009. Seedling diseases, Phytophthora root and stem rot, sudden death syndrome, Sclerotinia stem rot, and charcoal rot ranked in the top six of diseases that caused yield loss during these years. Soybean yield losses due to soybean rust and Sclerotinia stem rot varied greatly over years, especially when compared to other diseases. Accepted for publication 21 October 2010. Published 22 November 2010.


2003 ◽  
Vol 4 (1) ◽  
pp. 24 ◽  
Author(s):  
J. A. Wrather ◽  
S. R. Koenning ◽  
T. R. Anderson

Soybean yields in the U.S. and Ontario have often been suppressed by diseases. The resulting losses are important to rural economies and to the economies of allied industries in urban areas. The authors compiled estimates of soybean yield losses due to diseases for each soybean producing state in the U.S. and Ontario from 1999 to 2002. The goal was to provide this information to help funding agencies and scientists prioritize research objectives and budgets. Accepted for publication 4 March 2003. Published 25 March 2003.


Sign in / Sign up

Export Citation Format

Share Document