Constraints Automatic Relaxation to Design Products with Fully Free Form Features

Author(s):  
Jean-Philippe Pernot ◽  
Qian Qiao ◽  
Philippe Véron
Keyword(s):  
2000 ◽  
Vol 06 (02) ◽  
pp. 273-302 ◽  
Author(s):  
MARZIA FONTANA ◽  
FRANCA GIANNINI ◽  
MARIA MEIRANA

Author(s):  
Thomas R. Langerak ◽  
Joris S. M. Vergeest

Modeling with free form features has become the standard in Computer-Aided Design (CAD). With the increasing complexity of free form CAD models, features offer a high-level approach to modeling shapes. However, in most commercial modeling packages, only a static set of free form features is available. Researchers have tried to solve this problem by coming up with methods for user-driven free form feature definition, but failed to connect their methods to a means to instantiate these user-driven free form features on a target surface. Reversely, researchers have proposed tools for modeling with free form features, but these methods are time-intensive in that they are as of yet unsuitable for pre-defined features. This paper presents a new method for user-driven feature definition, as well as a method to instantiate these user-defined features on a target surface. We propose the concept of a dual environment, in which the definition of a feature is maintained simultaneously with its instance on a target surface, allowing the user to modify the definition of an already instantiated feature. This dual environment enables dynamic feature modeling, in which the user is able to change the definition of instantiated features on-the-fly. Furthermore, the proposed instantiation method is independent from the type of shape representation of the target surface and thereby increases the applicability of the method. The paper includes an extensive application example and discusses the results and shortcomings of the proposed methods.


2008 ◽  
Vol 59 (6) ◽  
pp. 626-637 ◽  
Author(s):  
J.-P. Pernot ◽  
B. Falcidieno ◽  
F. Giannini ◽  
J.-C. Léon

1994 ◽  
Vol 25 (2) ◽  
pp. 173-187 ◽  
Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang
Keyword(s):  

2007 ◽  
Vol 18 (5) ◽  
pp. 489-504 ◽  
Author(s):  
T. R. Langerak ◽  
J. S. M. Vergeest

2000 ◽  
Vol 1 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Jami J. Shah ◽  
David Anderson ◽  
Yong Se Kim ◽  
Sanjay Joshi

This paper discusses the past 25 years of research in feature recognition. Although a great variety of feature recognition techniques have been developed, the discussion here focuses on the more successful ones. These include graph based and “hint” based methods, convex hull decomposition, and volume decomposition-recomposition techniques. Recent advances in recognizing features with free form features are also presented. In order to benchmark these methods, a frame of reference is created based on topological generality, feature interactions handled, surface geometry supported, pattern matching criteria used, and computational complexity. This framework is used to compare each of the recognition techniques. Problems related to domain dependence and multiple interpretations are also addressed. Finally, some current research challenges are discussed.


2002 ◽  
Vol 41 (03) ◽  
pp. 129-134 ◽  
Author(s):  
A. Wolski ◽  
E. Palombo-Kinne ◽  
F. Wolf ◽  
F. Emmrich ◽  
W. Becker ◽  
...  

Summary Aim: The cellular joint infiltrate in rheumatoid arthritis patients is rich in CD4-positive T-helper lymphocytes and macrophages, rendering anti-CD4 monoclonal antibodies (mAbs) suitable for specific immunoscintigraphy of human/ experimental arthritis. Following intravenous injection, however, mAbs are present both in the free form and bound to CD4-positive, circulating monocytes and T-cells. Thus, the present study aimed at analyzing the relative contribution of the free and the cell-bound component to the imaging of inflamed joints in experimental adjuvant arthritis (AA). Methods: AA rat peritoneal macrophages or lymph node T-cells were incubated in vitro with saturating amounts of 99mTc-anti-CD4 mAb (W3/25) and injected i.v. into rats with AA. Results: In vitro release of 99mTc-anti-CD4 mAb from the cells was limited (on average 1.57%/h for macrophages and 0.84%/h for T-cells). Following i.v. injection, whole body/joint scans and tissue measurements showed only negligible accumulation of radioactivity in inflamed ankle joints (tissue: 0.22 and 0.34% of the injected activity, respectively), whereas the radioactivity was concentrated in liver (tissue: 79% and 71%, respectively), kidney, and urinary bladder. Unlike macrophages, however, anti-CD4 mAb-coated T-cells significantly accumulated in lymphoid organs, the inflamed synovial membrane of the ankle joints, as well as in elbow and knee joints. Conclusion: While the overall contribution of cell-bound mAbs to the imaging of arthritic joints with anti-CD4 mAbs is minimal, differential accumulation of macrophages and T-cells in lymphoid organs and the inflamed synovial membrane indicates preferential migration patterns of these 2 cell populations in arthritic rats. Although only validated for 99mTc-anti-CD4 mAbs, extrapolation of the results to other anticellular mAbs with similar affinity for their antigen may be possible.


Sign in / Sign up

Export Citation Format

Share Document