Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)

2008 ◽  
pp. 307-328
Author(s):  
Conny Schütte ◽  
Marcel Dicke
Keyword(s):  
2015 ◽  
Vol 68 ◽  
pp. 446-446
Author(s):  
D.J. Wilson ◽  
P.J. Gerard

Spiny snout mite (Neomolgus capillatus) is a potential biocontrol agent for clover flea (Sminthurus viridis) a white clover pest on dairy farms in warmer and wetter parts of New Zealand In the 1990s this mite was introduced from Brittany France into Tasmania for clover flea control Results during the release programme were highly promising and subsequent anecdotal farmer reports indicate widespread decreases in damage As N capillatus is a predatory mite and already known to attack nontarget organisms habitat specificity will determine whether it could be introduced into New Zealand without risk to native insects To assess this pastures on nine of the original Tasmanian release farms and adjacent nontarget habitats ranging from bush wetlands eucalypt stands to sand dune country were sampled in April 2014 Litter samples were collected heat extracted and mite species identified Neomolgus capillatus was found at effective densities in pastures that had good clover cover Where present it displaced Bdellodes spp mites that are ineffective against clover flea No N capillatus were found in the nontarget habitats all of which lacked clover and contained other predatory mites including Bdellodes spp Therefore the preference by N capillatus for lush pastures makes it an excellent prospect for introduction as a biocontrol agent into clover flea prone regions of New Zealand


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gamze Incedayi ◽  
Harun Cimen ◽  
Derya Ulug ◽  
Mustapha Touray ◽  
Edna Bode ◽  
...  

AbstractOur study aimed to identify the novel acaricidal compound in Xenorhabdus szentirmaii and X. nematophila using the easyPACId approach (easy Promoter Activated Compound Identification). We determined the (1) effects of cell-free supernatant (CFS) obtained from mutant strains against T. urticae females, (2) CFS of the acaricidal bioactive strain of X. nematophila (pCEP_kan_XNC1_1711) against different biological stages of T. urticae, and females of predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, (3) effects of the extracted acaricidal compound on different biological stages of T. urticae, and (4) cytotoxicity of the active substance. The results showed that xenocoumacin produced by X. nematophila was the bioactive acaricidal compound, whereas the acaricidal compound in X. szentirmaii was not determined. The CFS of X. nematophila (pCEP_kan_XNC1_1711) caused 100, 100, 97.3, and 98.1% mortality on larvae, protonymph, deutonymph and adult female of T. urticae at 7 dpa in petri dish experiments; and significantly reduced T. urticae population in pot experiments. However, the same CFS caused less than 36% mortality on the predatory mites at 7dpa. The mortality rates of extracted acaricidal compound (xenocoumacin) on the larva, protonymph, deutonymph and adult female of T. urticae were 100, 100, 97, 96% at 7 dpa. Cytotoxicity assay showed that IC50 value of xenocoumacin extract was 17.71 μg/ml after 48 h. The data of this study showed that xenocoumacin could potentially be used as bio-acaricide in the control of T. urticae; however, its efficacy in field experiments and its phytotoxicity need to be assessed in future.


Author(s):  
Ángel Nexticapan-Garcéz ◽  
Marcos Cua-Basulto ◽  
Rodolfo Martín-Mex ◽  
Daisy Pérez-Brito ◽  
Alfonso Larqué-Saavedra ◽  
...  

Author(s):  
Fumiaki Saitoh ◽  
Arne Janssen ◽  
Yasuyuki Choh
Keyword(s):  

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Stefan Möth ◽  
Andreas Walzer ◽  
Markus Redl ◽  
Božana Petrović ◽  
Christoph Hoffmann ◽  
...  

Viticultural practices and landscape composition are the main drivers influencing biological pest control in vineyards. Predatory mites, mainly phytoseiid (Phytoseiidae) and tydeoid mites (Tydeidae), are important to control phytophagous mites (Tetranychidae and Eriophyidae) on vines. In the absence of arthropod prey, pollen is an important food source for predatory mites. In 32 paired vineyards located in Burgenland/Austria, we examined the effect of landscape composition, management type (organic/integrated), pesticide use, and cover crop diversity of the inter-row on the densities of phytoseiid, tydeoid, and phytophagous mites. In addition, we sampled pollen on vine leaves. Typhlodromus pyri Scheuten was the main phytoseiid mite species and Tydeus goetzi Schruft the main tydeoid species. Interestingly, the area-related acute pesticide toxicity loading was higher in organic than in integrated vineyards. The densities of phytoseiid and tydeoid mites was higher in integrated vineyards and in vineyards with spontaneous vegetation. Their population also profited from an increased viticultural area at the landscape scale. Eriophyoid mite densities were extremely low across all vineyards and spider mites were absent. Biological pest control of phytophagous mites benefits from less intensive pesticide use and spontaneous vegetation cover in vineyard inter-rows, which should be considered in agri-environmental schemes.


2003 ◽  
Vol 94 (2) ◽  
pp. 183-195 ◽  
Author(s):  
Arthur M. Agnello ◽  
W.Harvey Reissig ◽  
Joe Kovach ◽  
Jan P. Nyrop

2013 ◽  
Vol 60 (4) ◽  
pp. 509-519 ◽  
Author(s):  
Wilton P. Cruz ◽  
Renato A. Sarmento ◽  
Adenir V. Teodoro ◽  
Marçal P. Neto ◽  
Maíra Ignacio

Sign in / Sign up

Export Citation Format

Share Document