Optimization Models of Production Planning Problems

Author(s):  
Hubert Missbauer ◽  
Reha Uzsoy
Logistics ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 52
Author(s):  
Tuğçe Taşkıner ◽  
Bilge Bilgen

This paper provides a comprehensive review of the research done on optimization models that focus on harvest and production planning for food crops. Optimization models have been used extensively in providing insights to decision-makers on issues related to harvest and production planning in agri-food supply chains. First, we conduct an extensive literature review on previous survey articles to distinguish our research from others. Based on the previous reviews, a new classification scheme is developed to classify articles systematically. Harvest and production planning problems in agri-food supply chains are analyzed through three sections: problem scope, model characteristics, and modeling approach. Neglected problem topics and several promising research directions are presented to stimulate research interest on agri-food supply chains specifically planning of harvest and production.


2015 ◽  
Vol 36 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Francisco P Vergara ◽  
Cristian D Palma ◽  
Héctor Sepúlveda

1998 ◽  
Vol 08 (07) ◽  
pp. 1251-1276 ◽  
Author(s):  
SURESH P. SETHI ◽  
HANQIN ZHANG ◽  
QING ZHANG

Recently, the production control problem in stochastic manufacturing systems has generated a great deal of interest. The goal is to obtain production rates to minimize total expected surplus and production cost. This paper reviews the research devoted to minimum average cost production planning problems in stochastic manufacturing systems. Manufacturing systems involve a single or parallel failure-prone machines producing a number of different products, random production capacity, and constant demands.


Author(s):  
S Noori ◽  
M Bagherpour ◽  
F Zorriassatine ◽  
A Makui ◽  
R Parkin

The problem of matching production levels for individual products to demand fluctuations during multiple periods is known in the production planning literature as the multi-product multi-period (MPMP) problem. Linear programming (LP)-based solutions have been extensively reported in this respect. MPMP problems are commonly solved by using either analytic or simulation methods. More recently, hybrid solutions consisting of both analytical models and simulation analysis have been proposed where some operational criteria, e.g. the order of visit to machining centres, are taken into account. In this paper, results related to some of the literature based on hybrid solutions are used as the initial feasible solutions and then examined in the context of project scheduling by considering the influences of resource constraints. After converting the MPMP to a project network problem and assigning resources to activities and consequently levelling the resource profiles, it is discovered that machine utilization can be further improved by applying unused machine capacities. A LP model is therefore developed in order to maximize feasible production rates over all the production planning periods. The proposed approach results in improvements on the results of earlier hybrid solutions reported in the literature. Finally, three different planning problems are suggested for further applications of the proposed approach in the context of manufacturing environments.


Sign in / Sign up

Export Citation Format

Share Document