Blood Flow Simulation in a Giant Intracranial Aneurysm and Its Validation by Digital Subtraction Angiography

Author(s):  
Harvey Ho ◽  
Jian Wu ◽  
Peter Hunter
2021 ◽  
Author(s):  
Serge Marbacher ◽  
Matthias Halter ◽  
Deborah R Vogt ◽  
Jenny C Kienzler ◽  
Christian T J Magyar ◽  
...  

Abstract BACKGROUND The current gold standard for evaluation of the surgical result after intracranial aneurysm (IA) clipping is two-dimensional (2D) digital subtraction angiography (DSA). While there is growing evidence that postoperative 3D-DSA is superior to 2D-DSA, there is a lack of data on intraoperative comparison. OBJECTIVE To compare the diagnostic yield of detection of IA remnants in intra- and postoperative 3D-DSA, categorize the remnants based on 3D-DSA findings, and examine associations between missed 2D-DSA remnants and IA characteristics. METHODS We evaluated 232 clipped IAs that were examined with intraoperative or postoperative 3D-DSA. Variables analyzed included patient demographics, IA and remnant distinguishing characteristics, and 2D- and 3D-DSA findings. Maximal IA remnant size detected by 3D-DSA was measured using a 3-point scale of 2-mm increments. RESULTS Although 3D-DSA detected all clipped IA remnants, 2D-DSA missed 30.4% (7 of 23) and 38.9% (14 of 36) clipped IA remnants in intraoperative and postoperative imaging, respectively (95% CI: 30 [ 12, 49] %; P-value .023 and 39 [23, 55] %; P-value = <.001), and more often missed grade 1 (< 2 mm) clipped remnants (odds ratio [95% CI]: 4.3 [1.6, 12.7], P-value .005). CONCLUSION Compared with 2D-DSA, 3D-DSA achieves a better diagnostic yield in the evaluation of clipped IA. Our proposed method to grade 3D-DSA remnants proved to be simple and practical. Especially small IA remnants have a high risk to be missed in 2D-DSA. We advocate routine use of either intraoperative or postoperative 3D-DSA as a baseline for lifelong follow-up of clipped IA.


Author(s):  
Yi Dong Bao ◽  
Dong Mei Wu

A physical mesh-less soft tissue cutting model with the viscoelastic creep characteristics has been proposed in this paper. The model is composed of filled spheres which are connected by Kelvin structure, so as to realize the cutting with viscoelastic creep characteristics. Then, it is further compared with the mass spring model in order to verify the effectiveness of the model. Secondly, a range-based Smoothed Particle Hydrodynamics (SPH) method with variable smoothing length is proposed, in order to simulate the blood flow simulation effect in the virtual surgery training system. Finally, the two are combined to be applied to the kidney soft tissue cutting experiment in surgery trainings. Experiments show there is a significant improvement on the cutting and simulation effect in terms of the viscoelasticity of the soft tissue cutting and the pressure and viscous force of blood flow.


1974 ◽  
Vol 41 (6) ◽  
pp. 657-670 ◽  
Author(s):  
Sean Mullan

✓ The results of 61 cases of stereotaxic thrombosis of intracranial berry aneurysms indicate that the technique in selected cases is comparable to, but not necessarily superior to standard surgical methods. The results of wire-induced thrombosis in 15 cases of giant intracranial aneurysm suggest that this method is effective in situations where clipping and encapsulation are inapplicable. The results of thrombosis in six cases of carotid cavernous fistula suggest that intracavernous wire thrombosis may prove to be the treatment of choice in that it seals the fistula without impairing carotid blood flow.


Sign in / Sign up

Export Citation Format

Share Document