From Formal Models to Empirical Evaluation and Back Again

Author(s):  
Philippe Palanque ◽  
Fabio Paternò
2016 ◽  
Vol 32 (1) ◽  
pp. 17-38 ◽  
Author(s):  
Florian Schmitz ◽  
Karsten Manske ◽  
Franzis Preckel ◽  
Oliver Wilhelm

Abstract. The Balloon-Analogue Risk Task (BART; Lejuez et al., 2002 ) is one of the most popular behavioral tasks suggested to assess risk-taking in the laboratory. Previous research has shown that the conventionally computed score is predictive, but neglects available information in the data. We suggest a number of alternative scores that are motivated by theories of risk-taking and that exploit more of the available data. These scores can be grouped around (1) risk-taking, (2) task performance, (3) impulsive decision making, and (4) reinforcement sequence modulation. Their theoretical rationale is detailed and their validity is tested within the nomological network of risk-taking, deviance, and scholastic achievement. Two multivariate studies were conducted with youths (n = 435) and with adolescents/young adults (n = 316). Additionally, we tested formal models suggested for the BART that decompose observed behavior into a set of meaningful parameters. A simulation study with parameter recovery was conducted, and the data from the two studies were reanalyzed using the models. Most scores were reliable and differentially predictive of criterion variables and may be used in basic research. However, task specificity and the generally moderate validity do not warrant use of the experimental paradigm for diagnostic purposes.


Author(s):  
Charles A. Doan ◽  
Ronaldo Vigo

Abstract. Several empirical investigations have explored whether observers prefer to sort sets of multidimensional stimuli into groups by employing one-dimensional or family-resemblance strategies. Although one-dimensional sorting strategies have been the prevalent finding for these unsupervised classification paradigms, several researchers have provided evidence that the choice of strategy may depend on the particular demands of the task. To account for this disparity, we propose that observers extract relational patterns from stimulus sets that facilitate the development of optimal classification strategies for relegating category membership. We conducted a novel constrained categorization experiment to empirically test this hypothesis by instructing participants to either add or remove objects from presented categorical stimuli. We employed generalized representational information theory (GRIT; Vigo, 2011b , 2013a , 2014 ) and its associated formal models to predict and explain how human beings chose to modify these categorical stimuli. Additionally, we compared model performance to predictions made by a leading prototypicality measure in the literature.


1986 ◽  
Vol 47 (7) ◽  
pp. 1149-1154
Author(s):  
Le Quang Rang ◽  
D. Voslamber

2018 ◽  
pp. 114-131
Author(s):  
O. Yu. Bondarenko

his article explores theoretical and experimental approach to modeling social interactions. Communication and exchange of information with other people affect individual’s behavior in numerous areas. Generally, such influence is exerted by leaders, outstanding individuals who have a higher social status or expert knowledge. Social interactions are analyzed in the models of social learning, game theoretic models, conformity models, etc. However, there is a lack of formal models of asymmetric interactions. Such models could help elicit certain qualities characterizing higher social status and perception of status by other individuals, find the presence of leader influence and analyze its mechanism.


2018 ◽  
Author(s):  
Timothy Newhouse ◽  
Daria E. Kim ◽  
Joshua E. Zweig

The diverse molecular architectures of terpene natural products are assembled by exquisite enzyme-catalyzed reactions. Successful recapitulation of these transformations using chemical synthesis is hard to predict from first principles and therefore challenging to execute. A means of evaluating the feasibility of such chemical reactions would greatly enable the development of concise syntheses of complex small molecules. Herein, we report the computational analysis of the energetic favorability of a key bio-inspired transformation, which we use to inform our synthetic strategy. This approach was applied to synthesize two constituents of the historically challenging indole diterpenoid class, resulting in a concise route to (–)-paspaline A in 9 steps from commercially available materials and the first pathway to and structural confirmation of emindole PB in 13 steps. This work highlights how traditional retrosynthetic design can be augmented with quantum chemical calculations to reveal energetically feasible synthetic disconnections, minimizing time-consuming and expensive empirical evaluation.


Sign in / Sign up

Export Citation Format

Share Document