Role of Submerged Macrophytes for the Microbial Community and Dynamics of Dissolved Organic Carbon in Aquatic Ecosystems

Author(s):  
Robert G. Wetzel ◽  
Morten Søndergaard
2015 ◽  
Vol 12 (5) ◽  
pp. 4021-4056 ◽  
Author(s):  
J. R. Larouche ◽  
B. W. Abbott ◽  
W. B. Bowden ◽  
J. B. Jones

Abstract. In the Alaskan Arctic, rapid climate change is increasing the frequency of disturbance including wildfire and permafrost collapse. These pulse disturbances may influence the delivery of dissolved organic carbon (DOC) to aquatic ecosystems, however the magnitude of these effects compared to the natural background variability of DOC at the watershed scale is not well known. We measured DOC quantity, composition, and biodegradability from 14 river and stream reaches (watershed sizes ranging from 1.5–167 km2) some of which were impacted by permafrost collapse (thermokarst) and fire. We found that region had a significant impact on quantity and biodegradability of DOC, likely driven by landscape and watershed characteristics such as lithology, soil and vegetation type, elevation, and glacial age. However, contrary to our hypothesis, we found that streams disturbed by thermokarst and fire did not contain significantly altered labile DOC fractions compared to adjacent reference waters, potentially due to rapid ecosystem recovery after fire and thermokarst as well as the limited spatial extent of thermokarst. Overall, biodegradable DOC ranged from 4 to 46% and contrary to patterns of DOC biodegradability in large Arctic rivers, seasonal variation in DOC biodegradability showed no clear pattern between sites, potentially related to stream geomorphology and position along the river network. While thermokarst and fire can alter DOC quantity and biodegradability at the scale of the feature, we conclude that tundra ecosystems are resilient to these types of disturbance.


2015 ◽  
Vol 12 (14) ◽  
pp. 4221-4233 ◽  
Author(s):  
J. R. Larouche ◽  
B. W. Abbott ◽  
W. B. Bowden ◽  
J. B. Jones

Abstract. In the Alaskan Arctic, rapid climate change is increasing the frequency of disturbance including wildfire and permafrost collapse. These pulse disturbances may influence the delivery of dissolved organic carbon (DOC) to aquatic ecosystems, however the magnitude of these effects compared to the natural background variability of DOC at the watershed scale is not well known. We measured DOC quantity, composition, and biodegradability from 14 river and stream reaches (watershed sizes ranging from 1.5–167 km2) some of which were impacted by permafrost collapse (thermokarst) and fire. We found that region had a significant impact on quantity and biodegradability of DOC, likely driven by landscape and watershed characteristics such as lithology, soil and vegetation type, elevation, and glacial age. However, contrary to our hypothesis, we found that streams disturbed by thermokarst and fire did not contain significantly altered labile DOC fractions compared to adjacent reference waters, potentially due to rapid ecosystem recovery after fire and thermokarst as well as the limited spatial extent of thermokarst. Overall, biodegradable DOC ranged from 4 to 46 % and contrary to patterns of DOC biodegradability in large Arctic rivers, seasonal variation in DOC biodegradability showed no clear pattern between sites, potentially related to stream geomorphology and position along the river network. While thermokarst and fire can alter DOC quantity and biodegradability at the scale of the feature, we conclude that tundra ecosystems are resilient to these types of disturbance.


2021 ◽  
Author(s):  
Neil Saintilan ◽  
Jeffrey J. Kelleway ◽  
Debashish Mazumder ◽  
Tsuyoshi Kobayashi ◽  
Li Wen

2008 ◽  
Vol 65 (3) ◽  
pp. 543-548 ◽  
Author(s):  
Yves T Prairie

In this perspective article, I argue that dissolved organic carbon occupies a central role in the functioning of lake ecosystems, comparable in importance to that played by nutrients. Because lakes receive so much dissolved organic carbon from the terrestrial landscape, its accumulation in water bodies usually represents the largest pool of lacustrine organic matter within the water column. The transformation of even a small fraction of this external carbon by the microbial community can alter significantly the metabolic balance of lake ecosystems, simultaneously releasing carbon dioxide to the atmosphere and burying organic carbon in lake sediments. At the landscape level, even if they occupy a small fraction of the landscape, lakes play a surprisingly important role in the regional carbon budget, particularly when considered at the appropriate temporal scale.


Ecosystems ◽  
2008 ◽  
Vol 11 (7) ◽  
pp. 1035-1053 ◽  
Author(s):  
Rafael Marcé ◽  
Enrique Moreno-Ostos ◽  
Pilar López ◽  
Joan Armengol

Sign in / Sign up

Export Citation Format

Share Document