An Inverse Obstacle Problem: a Uniqueness Theorem for Balls

Author(s):  
Changmei Liu
Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the metric geometry of Teichmüller space. It first explains how one can think of Teich(Sɡ) as the space of complex structures on Sɡ. To this end, the chapter defines quasiconformal maps between surfaces and presents a solution to the resulting Teichmüller's extremal problem. It also considers the correspondence between complex structures and hyperbolic structures, along with the Teichmüller mapping, Teichmüller metric, and the proof of Teichmüller's uniqueness and existence theorems. The fundamental connection between Teichmüller's theorems, holomorphic quadratic differentials, and measured foliations is discussed as well. Finally, the chapter describes the Grötzsch's problem, whose solution is tied to the proof of Teichmüller's uniqueness theorem.


Author(s):  
H. Bahajji-El Idrissi ◽  
O. El-Fallah ◽  
K. Kellay

2021 ◽  
Vol 115 ◽  
pp. 106958
Author(s):  
Shuangting Lan ◽  
Peixuan Weng ◽  
Zhaoquan Xu

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Matteo Focardi ◽  
Emanuele Spadaro

AbstractBuilding upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle problem in {\mathbb{R}^{n+1}} with obstacle function φ (suitably smooth and decaying fast at infinity) up to sets of null {{\mathcal{H}}^{n-1}} measure. In particular, if φ is analytic, the problem reduces to the zero obstacle case dealt with in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] and therefore we retrieve the same results:(i)local finiteness of the {(n-1)}-dimensional Minkowski content of the free boundary (and thus of its Hausdorff measure),(ii){{\mathcal{H}}^{n-1}}-rectifiability of the free boundary,(iii)classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most {(n-2)} in the free boundary.Instead, if {\varphi\in C^{k+1}(\mathbb{R}^{n})}, {k\geq 2}, similar results hold only for distinguished subsets of points in the free boundary where the order of contact of the solution with the obstacle function φ is less than {k+1}.


2019 ◽  
Vol 7 (1) ◽  
pp. 179-196
Author(s):  
Anders Björn ◽  
Daniel Hansevi

Abstract The theory of boundary regularity for p-harmonic functions is extended to unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, 1 < p < ∞. The barrier classification of regular boundary points is established, and it is shown that regularity is a local property of the boundary. We also obtain boundary regularity results for solutions of the obstacle problem on open sets, and characterize regularity further in several other ways.


Sign in / Sign up

Export Citation Format

Share Document