The Number of Visits to a Subset of the State Space by a Continuous-Parameter Irreducible Markov Chain During a Finite Time Interval

Author(s):  
Attila Csenki
1988 ◽  
Vol 25 (4) ◽  
pp. 808-814 ◽  
Author(s):  
Keith N. Crank

This paper presents a method of approximating the state probabilities for a continuous-time Markov chain. This is done by constructing a right-shift process and then solving the Kolmogorov system of differential equations recursively. By solving a finite number of the differential equations, it is possible to obtain the state probabilities to any degree of accuracy over any finite time interval.


1988 ◽  
Vol 25 (04) ◽  
pp. 808-814 ◽  
Author(s):  
Keith N. Crank

This paper presents a method of approximating the state probabilities for a continuous-time Markov chain. This is done by constructing a right-shift process and then solving the Kolmogorov system of differential equations recursively. By solving a finite number of the differential equations, it is possible to obtain the state probabilities to any degree of accuracy over any finite time interval.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Li Liang

This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yan Qi ◽  
Shiyu Zhong ◽  
Zhiguo Yan

In this paper, the design of finite-time H2/H∞ controller for linear Itô stochastic Poisson systems is considered. First, the definition of finite-time H2/H∞ control is proposed, which considers the transient performance, H2 index, and H∞ index simultaneously in a predetermined finite-time interval. Then, the state feedback and observer-based finite-time H2/H∞ controllers are presented and some new sufficient conditions are obtained. Moreover, an algorithm is given to optimize H2 and H∞ index, simultaneously. Finally, a simulation example indicates the effectiveness of the results.


2009 ◽  
Vol 46 (03) ◽  
pp. 812-826
Author(s):  
Saul Jacka

Motivated by Feller's coin-tossing problem, we consider the problem of conditioning an irreducible Markov chain never to wait too long at 0. Denoting by τ the first time that the chain,X, waits for at least one unit of time at the origin, we consider conditioning the chain on the event (τ›T). We show that there is a weak limit asT→∞ in the cases where either the state space is finite orXis transient. We give sufficient conditions for the existence of a weak limit in other cases and show that we have vague convergence to a defective limit if the time to hit zero has a lighter tail than τ and τ is subexponential.


2019 ◽  
Vol 51 (4) ◽  
pp. 967-993
Author(s):  
Jorge I. González Cázares ◽  
Aleksandar Mijatović ◽  
Gerónimo Uribe Bravo

AbstractWe exhibit an exact simulation algorithm for the supremum of a stable process over a finite time interval using dominated coupling from the past (DCFTP). We establish a novel perpetuity equation for the supremum (via the representation of the concave majorants of Lévy processes [27]) and use it to construct a Markov chain in the DCFTP algorithm. We prove that the number of steps taken backwards in time before the coalescence is detected is finite. We analyse the performance of the algorithm numerically (the code, written in Julia 1.0, is available on GitHub).


2009 ◽  
Vol 46 (3) ◽  
pp. 812-826
Author(s):  
Saul Jacka

Motivated by Feller's coin-tossing problem, we consider the problem of conditioning an irreducible Markov chain never to wait too long at 0. Denoting by τ the first time that the chain, X, waits for at least one unit of time at the origin, we consider conditioning the chain on the event (τ›T). We show that there is a weak limit as T→∞ in the cases where either the state space is finite or X is transient. We give sufficient conditions for the existence of a weak limit in other cases and show that we have vague convergence to a defective limit if the time to hit zero has a lighter tail than τ and τ is subexponential.


Sign in / Sign up

Export Citation Format

Share Document