The Number of Visits to a Subset of the State Space by an Irreducible Semi-Markov Process during a Finite Time Interval: The Probability Mass Function

Author(s):  
Attila Csenki
1991 ◽  
Vol 28 (04) ◽  
pp. 822-832 ◽  
Author(s):  
Attila Csenki

In this note, an irreducible semi-Markov process is considered whose finite state space is partitioned into two non-empty sets A and B. Let MB (t) stand for the number of visits of Y to B during the time interval [0, t], t > 0. A renewal argument is used to derive closed-form expressions for the Laplace transform (with respect to t) of a certain family of functions in terms of which the moments of MB (t) are easily expressible. The theory is applied to a small reliability model in conjunction with a Tauberian argument to evaluate the behaviour of the first two moments of MB (t) as t →∞.


1991 ◽  
Vol 28 (4) ◽  
pp. 822-832 ◽  
Author(s):  
Attila Csenki

In this note, an irreducible semi-Markov process is considered whose finite state space is partitioned into two non-empty sets A and B. Let MB(t) stand for the number of visits of Y to B during the time interval [0, t], t > 0. A renewal argument is used to derive closed-form expressions for the Laplace transform (with respect to t) of a certain family of functions in terms of which the moments of MB(t) are easily expressible. The theory is applied to a small reliability model in conjunction with a Tauberian argument to evaluate the behaviour of the first two moments of MB(t) as t →∞.


2004 ◽  
Vol 41 (2) ◽  
pp. 570-578 ◽  
Author(s):  
Zvetan G. Ignatov ◽  
Vladimir K. Kaishev

An explicit formula for the probability of nonruin of an insurance company in a finite time interval is derived, assuming Poisson claim arrivals, any continuous joint distribution of the claim amounts and any nonnegative, increasing real function representing its premium income. The formula is compact and expresses the nonruin probability in terms of Appell polynomials. An example, illustrating its numerical convenience, is also given in the case of inverted Dirichlet-distributed claims and a linearly increasing premium-income function.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Li Liang

This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document