Pollen Tube Growth in Culture. I. Control of Morphology and Generative Nucleus Division in Cultured Pollen Tubes of Nicotiana

1992 ◽  
pp. 162-167 ◽  
Author(s):  
M. Read ◽  
A. Bacic ◽  
A. E. Clarke
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Biying Dong ◽  
Qing Yang ◽  
Zhihua Song ◽  
Lili Niu ◽  
Hongyan Cao ◽  
...  

AbstractMature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2–3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.


2013 ◽  
Vol 40 (No. 2) ◽  
pp. 65-71 ◽  
Author(s):  
D. Milatović ◽  
D. Nikolić ◽  
B. Krška

Self-(in)compatibility was tested in 40 new apricot cultivars from European breeding programmes. Pollen-tube growth in pistils from laboratory pollinations was analysed using the fluorescence microscopy. Cultivars were considered self-compatible if at least one pollen tube reached the ovary in the majority of pistils. Cultivars were considered self- incompatible if the growth of pollen tubes in the style stopped along with formation of characteristic swellings. Of the examined cultivars, 18 were self-compatible and 22 were self-incompatible. Fluorescence microscopy provides a relatively rapid and reliable method to determine self-incompatibility in apricot cultivars.      


2021 ◽  
Author(s):  
Patrick Duckney ◽  
Johan T. Kroon ◽  
Martin R. Dixon ◽  
Timothy J. Hawkins ◽  
Michael J. Deeks ◽  
...  

2014 ◽  
Vol 65 (1-2) ◽  
pp. 101-105 ◽  
Author(s):  
Renata Śnieżko ◽  
Krystyna Winiarczyk

After selfpollination of <em>Sinapis alba</em> L. pollen tubes growth is inhibited on the stigma. The pollen grains germinate 3-4 hours after pollination. The pollen give rise to one or more pollen tubes. They grow along the papillae. In the place of contact between the papilla and pollen tube the pellicula is digested. Then the direction of pollen tube growth changes completely. Pollen tubes grow back on the exine of their own pollen grain, or turn into the air. The pollen tubes growth was inhibited in 6-8 hours after selfpollination. After crosspollination usually there is no incompatibility reaction.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 156 ◽  
Author(s):  
Nolan Scheible ◽  
Andrew McCubbin

The coordinated growth of pollen tubes through floral tissues to deliver the sperm cells to the egg and facilitate fertilization is a highly regulated process critical to the Angiosperm life cycle. Studies suggest that the concerted action of a variety of signaling pathways underlies the rapid polarized tip growth exhibited by pollen tubes. Ca2+ and small GTPase-mediated pathways have emerged as major players in the regulation of pollen tube growth. Evidence suggests that these two signaling pathways not only integrate with one another but also with a variety of other important signaling events. As we continue to elucidate the mechanisms involved in pollen tube growth, there is a growing importance in taking a holistic approach to studying these pathways in order to truly understand how tip growth in pollen tubes is orchestrated and maintained. This review considers our current state of knowledge of Ca2+-mediated and GTPase signaling pathways in pollen tubes, how they may intersect with one another, and other signaling pathways involved. There will be a particular focus on recent reports that have extended our understanding in these areas.


HortScience ◽  
1992 ◽  
Vol 27 (5) ◽  
pp. 425-427 ◽  
Author(s):  
Gregory A. Lang ◽  
E. James Parrie

Pollen from six southern highbush blueberry cultivars derived from Vaccinium corymbosum L. and one or more other species (V. darrowi Camp, V. ashei Reade, and V. angustifolium Aiton) was incubated on nutrient agar to determine tetrad viability, pollen tube growth rates, and incidence of multiple pollen tube germinations. `Avonblue' pollen had a significantly lower tetrad germination percentage than `Georgiagem', `Flordablue', `Sharpblue', `Gulfcoast', or `O'Neal', all of which had >90% viable tetrads. The in vitro growth rate of `O'Neal' pollen tubes was significantly higher than the growth rates of `Sharpblue' and `Georgiagem pollen tubes. Of those tetrads that were viable, more than two pollen tubes germinated from 83% and 91% of the `Gulfcoast' and `Sharpblue' tetrads, respectively, while only 11% of the `Flordablue' tetrads produced more than two pollen tubes. The total number of pollen tubes germinated per 100 tetrads ranged from 157 (`Flordablue') to 324 (`Sharpblue'), resulting in actual pollen grain viabilities ranging from 39% to 81%. Genetic differences in pollen vigor, as indicated by pollen viability, pollen tube growth rates, and multiple pollen tube germinations, may influence blueberry growers' success in optimizing the beneficial effects of cross-pollination on fruit development.


HortScience ◽  
2009 ◽  
Vol 44 (5) ◽  
pp. 1277-1283 ◽  
Author(s):  
Keith Yoder ◽  
Rongcai Yuan ◽  
Leon Combs ◽  
Ross Byers ◽  
Jim McFerson ◽  
...  

Effects of temperature and the combination of liquid lime sulfur (LLS) and fish oil (FO) applied during bloom on pollen germination and pollen tube growth in flowers and fruit set were examined in apples (Malus ×domestica Borkh.). Percent germination of pollen of ‘Manchurian’ crabapples and ‘Golden Delicious’ apple flowers on the stigmatic surface of ‘Golden Delicious’ pistils increased with increasing temperature from 13 to 29 °C in the first 24 and 48 h after pollination, respectively, but not thereafter. Pollen tube growth rate in the style increased quadratically with increasing temperature from 13 to 29 °C. ‘Manchurian’ was a more effective pollenizer of ‘Golden Delicious’ than was ‘Golden Delicious’ pollen. For example, at 24 or 29 °C, some ‘Manchurian’ pollen tubes grew to the base of ‘Golden Delicious’ styles by 24 h after pollination. On the other hand, no ‘Golden Delicious’ pollen tube grew to the base of a ‘Golden Delicious’ style regardless of temperature and time. Pollen tube growth rate in the style increased with increasing day/night temperature from 7/0 to 24/7 °C. The time required for pollen tubes to grow to the base of styles decreased with increasing day/night temperature from 13/2 to 24/7 °C. Only ≈36 h was required for pollen tubes to grow to the base of style at 24/7 °C, whereas pollen tubes grew very slowly and no pollen tubes grew to the base of style at 7/0 °C regardless of pollen source. LLS + FO, applied 4 or 24 h after pollination, inhibited pollen germination, pollen tube growth in the style, fertilization, and fruit set, but it had no effect when applied 48 h after pollination. These results suggest that LLS + FO applied at this bloom stage causes flower or fruit abscission most likely by inhibiting pollen germination, pollen tube growth in the style, and fertilization.


1992 ◽  
Vol 117 (2) ◽  
pp. 328-331 ◽  
Author(s):  
Robert D. Marquard

In vivo pollen tube growth of pecan [Carya illinoinensis (Wangenh.) K. Koch] was estimated to be ≈ 150 μm·hour-1 from 3 to 8 hours postpollination. Pollen tubes averaged 47, 194, 405, and 946 μm after 2, 3, 4, and 8 hours postpollination, respectively. Pollen tube growth was strongly influenced by temperature, and in vitro studies demonstrated pollen germination and tube growth were optimal at 27C for `Cape Fear' pecan. In in vivo studies, tubes of cross-pollen did not grow significantly faster than tubes of self-pollen. Pollen tubes of water hickory [C. aquatica (Michx. f.) Nutt.] grew significantly faster than those of C. illinoinensis. Bitternut [C. cordiformis (Wangenh.) K. Koch] and mockernut hickory (C. tomentosa Nutt.) pollen tubes grew significantly slower on pecan stigmas than did pecan pollen. Pollen arriving first on the stigma has a decided advantage for fertilization success of pecan. The fertilization success rate of pecan pollen arriving 24 hours after first pollen arrival was <3%.


Sign in / Sign up

Export Citation Format

Share Document