The site of action of the crossability genes (Kr 1, Kr 2) between Triticum and Secale. I. Pollen germination, pollen tube growth, and number of pollen tubes

Euphytica ◽  
1980 ◽  
Vol 29 (3) ◽  
pp. 571-579 ◽  
Author(s):  
B. S. Jalani ◽  
J. P. Moss
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Biying Dong ◽  
Qing Yang ◽  
Zhihua Song ◽  
Lili Niu ◽  
Hongyan Cao ◽  
...  

AbstractMature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2–3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.


HortScience ◽  
2009 ◽  
Vol 44 (5) ◽  
pp. 1277-1283 ◽  
Author(s):  
Keith Yoder ◽  
Rongcai Yuan ◽  
Leon Combs ◽  
Ross Byers ◽  
Jim McFerson ◽  
...  

Effects of temperature and the combination of liquid lime sulfur (LLS) and fish oil (FO) applied during bloom on pollen germination and pollen tube growth in flowers and fruit set were examined in apples (Malus ×domestica Borkh.). Percent germination of pollen of ‘Manchurian’ crabapples and ‘Golden Delicious’ apple flowers on the stigmatic surface of ‘Golden Delicious’ pistils increased with increasing temperature from 13 to 29 °C in the first 24 and 48 h after pollination, respectively, but not thereafter. Pollen tube growth rate in the style increased quadratically with increasing temperature from 13 to 29 °C. ‘Manchurian’ was a more effective pollenizer of ‘Golden Delicious’ than was ‘Golden Delicious’ pollen. For example, at 24 or 29 °C, some ‘Manchurian’ pollen tubes grew to the base of ‘Golden Delicious’ styles by 24 h after pollination. On the other hand, no ‘Golden Delicious’ pollen tube grew to the base of a ‘Golden Delicious’ style regardless of temperature and time. Pollen tube growth rate in the style increased with increasing day/night temperature from 7/0 to 24/7 °C. The time required for pollen tubes to grow to the base of styles decreased with increasing day/night temperature from 13/2 to 24/7 °C. Only ≈36 h was required for pollen tubes to grow to the base of style at 24/7 °C, whereas pollen tubes grew very slowly and no pollen tubes grew to the base of style at 7/0 °C regardless of pollen source. LLS + FO, applied 4 or 24 h after pollination, inhibited pollen germination, pollen tube growth in the style, fertilization, and fruit set, but it had no effect when applied 48 h after pollination. These results suggest that LLS + FO applied at this bloom stage causes flower or fruit abscission most likely by inhibiting pollen germination, pollen tube growth in the style, and fertilization.


HortScience ◽  
2017 ◽  
Vol 52 (8) ◽  
pp. 1054-1059 ◽  
Author(s):  
Khalil R. Jahed ◽  
Peter M. Hirst

Pollination is an essential prerequisite for the production of many fruit and seed crops, including apple. In apple, successful fertilization requires pollen transfer to the stigma, pollen germination, and successful pollen tube growth resulting in fruit set. Precise selection of the most effective pollinizers for commercial orchards is not possible however, until these processes are more fully understood. The present study was undertaken to compare pollinizers in terms of pollen tube growth and fruit set. On trees of ‘Honeycrisp’, ‘Fuji’, and ‘Gala’ from which bees were excluded, flowers were hand-pollinated using pollen collected from crabapple (‘Ralph Shay’ or Malus floribunda), ‘Delicious’ and ‘Golden Delicious’. Flowers were harvested at one, two, three, and four days after pollination (DAP). Pollen source had a significant influence on pollen germination on the stigmatic surface, number of pollen tubes penetrating the stigma, distance of pollen tube growth down the style, and pollen tubes reaching the base of the style. In ‘Honeycrisp’ and ‘Gala’, ‘Golden Delicious’ pollen grew the fastest, followed by ‘Delicious’ and crabapple. Neither ‘Ralph Shay’ nor Malus floribunda were effective pollinizers for ‘Honeycrisp’ and resulted in low fruit set suggesting incompatibility may be involved. However, both these crabapples were effective pollinizers for ‘Fuji’ and ‘Gala’. These results indicate that pollen source can have a tremendous impact on pollen tube growth and fruit set. The physiological basis for these effects is not clear, but implications for pollinizer selection are obvious.


HortScience ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 335-338 ◽  
Author(s):  
Sandra M. Reed

Little information is available on the reproductive behavior of Hydrangea macrophylla (Thunb. Ex J.A. Murr.) Ser. The objectives of this study were to investigate time of stigma receptivity, viability of pollen from sterile flowers, and self-incompatibility in this popular ornamental shrub. Pollen germination and pollen tube growth in styles were examined using fluorescence microscopy. Stigma receptivity was examined in cross-pollinations made from 1 day before anthesis to 8 days after anthesis. Maximum stigma receptivity for the two cultivars examined occurred from anthesis to 4 days after anthesis. Viability of pollen from sterile flowers was evaluated through pollen staining and observations of pollen tube growth. No significant difference in percent stainable pollen between fertile and sterile flowers was observed in any of the six taxa examined. Pollen germination and pollen tube growth were studied in cross-pollinations made using pollen from fertile and sterile flowers of two cultivars. For both cultivars, pollen tubes from fertile and sterile flowers grew to the same length and had entered ovules by 72 hours after pollination. Self-incompatibility was evaluated by comparing pollen germination and pollen tube growth in cross- and self-pollinations. In the five taxa examined, self pollen tubes were significantly shorter than cross pollen tubes in flowers that were examined 72 hours after pollination. This finding indicates the presence of a gametophytic self-incompatibility system in H. macrophylla.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ferdousse Laggoun ◽  
Nusrat Ali ◽  
Sabine Tourneur ◽  
Grégoire Prudent ◽  
Bruno Gügi ◽  
...  

To date, it is widely accepted by the scientific community that many agricultural regions will experience more extreme temperature fluctuations. These stresses will undoubtedly impact crop production, particularly fruit and seed yields. In fact, pollination is considered as one of the most temperature-sensitive phases of plant development and until now, except for the time-consuming and costly processes of genetic breeding, there is no immediate alternative to address this issue. In this work, we used a multidisciplinary approach using physiological, biochemical, and molecular techniques for studying the effects of two carbohydrate-based natural activators on in vitro tomato pollen germination and pollen tube growth cultured in vitro under cold conditions. Under mild and strong cold temperatures, these two carbohydrate-based compounds significantly enhanced pollen germination and pollen tube growth. The two biostimulants did not induce significant changes in the classical molecular markers implicated in pollen tube growth. Neither the number of callose plugs nor the CALLOSE SYNTHASE genes expression were significantly different between the control and the biostimulated pollen tubes when pollens were cultivated under cold conditions. PECTIN METHYLESTERASE (PME) activities were also similar but a basic PME isoform was not produced or inactive in pollen grown at 8°C. Nevertheless, NADPH oxidase (RBOH) gene expression was correlated with a higher number of viable pollen tubes in biostimulated pollen tubes compared to the control. Our results showed that the two carbohydrate-based products were able to reduce in vitro the effect of cold temperatures on tomato pollen tube growth and at least for one of them to modulate reactive oxygen species production.


Genome ◽  
1990 ◽  
Vol 33 (3) ◽  
pp. 321-327 ◽  
Author(s):  
L. A. Sitch ◽  
G. O. Romero

The wild relatives of rice are a valuable source of desirable agronomic traits, but prefertilization barriers operate in crosses of Oryza sativa L. with the wild Oryza species and related genera. Pollen germination was normal in crosses with O. brachyantha, O. eichingeri, O. officinalis, and O. ridleyi and slightly inhibited in crosses with Rhynchoryza subulata. Stigmal penetration of O. brachyantha and R. subulata pollen tubes was inhibited, while O. ridleyi pollen tubes showed both incompatible and weakly compatible reactions. Pollen tubes of O. eichingeri, O. officinalis, and O. ridleyi penetrated the stigma, but growth was frequently inhibited in the style or ovary wall, particularly in O. eichingeri crosses. The effect of postpollination application of boric acid, the immunosuppressant ε-aminocaproic acid (EACA), and gibberellic acid (GA3) and of ambient temperature (29 and 35 °C) on germination and pollen tube growth was investigated. Boric acid, EACA, and GA3 inhibited germination of O. brachyantha pollen, and boric acid and EACA inhibited pollen tube growth of O. brachyantha, O. eichingeri, O. ridleyi (35 °C), and R. subulata (29 °C). Pollen tube growth in the control and GA3 treatments was similar. Temperature had no effect on pollen germination and pollen tube growth was stimulated in O. ridleyi crosses at 35 °C only. The nature of incompatibility operating in these crosses is discussed.Key words: incompatibility, pollen tube growth, fertilization, Oryza, interspecific cross, intergeneric cross.


1972 ◽  
Vol 14 (2) ◽  
pp. 381-389 ◽  
Author(s):  
Chi-Chang Chen ◽  
Pryce B. Gibson

Pre-fertilization barriers to hybridization of Trifolium repens L. with its related species, T. nigrescens, T. occidentale, T. hybridum, T. ambiguum, and T. uniflorum, were studied by comparing pollen germination, pollen-tube growth, and fertilization following intra- and interspecific pollinations on T. repens. Pollen of T. repens began to germinate almost immediately after being placed on the stigmas of its own species; pollen germination approached 100% in 30 min. Pollen tubes grew rapidly. Eight hours after pollination the longer tubes had entered the micropyle of the most distant ovules. Fertilization was first observed at 8 hr. All ovules were fertilized within 24 hr. In interspecific pollinations using T. repens as the pistillate parent, the time required for pollen germination was longer and the frequency of germination was lower. Pollen tubes frequently swelled, coiled, or even burst in the styles. Pollen tubes of the species more closely related to T. repens appeared to grow faster and more normally. Fertilization occurred in all interspecific crosses. The highest frequency of ovules fertilized generally occurred in the species combinations in which pollen-tube growth was most similar to the control and the lowest frequency, in the combinations in which tube growth deviated the most from the control. These observations suggest that pre-fertilization barriers are not the only causes of cross-incompatibility of T. repens with related species. Post-fertilization barriers, which prevent zygotes from developing into viable seeds, also must exist.


2013 ◽  
Vol 40 (No. 2) ◽  
pp. 65-71 ◽  
Author(s):  
D. Milatović ◽  
D. Nikolić ◽  
B. Krška

Self-(in)compatibility was tested in 40 new apricot cultivars from European breeding programmes. Pollen-tube growth in pistils from laboratory pollinations was analysed using the fluorescence microscopy. Cultivars were considered self-compatible if at least one pollen tube reached the ovary in the majority of pistils. Cultivars were considered self- incompatible if the growth of pollen tubes in the style stopped along with formation of characteristic swellings. Of the examined cultivars, 18 were self-compatible and 22 were self-incompatible. Fluorescence microscopy provides a relatively rapid and reliable method to determine self-incompatibility in apricot cultivars.      


2021 ◽  
Author(s):  
Patrick Duckney ◽  
Johan T. Kroon ◽  
Martin R. Dixon ◽  
Timothy J. Hawkins ◽  
Michael J. Deeks ◽  
...  

1989 ◽  
Vol 37 (5) ◽  
pp. 429 ◽  
Author(s):  
BM Potts ◽  
JB Marsden-Smedley

The effect of boric acid (0-450 ppm) and sucrose (0-40%) on pollen germination and pollen tube growth in Eucalyptus globulus, E. morrisbyi, E. ovata and E. tirnigera was examined in vitro. Over the con- centrations tested, sucrose had by far the largest effect upon both pollen germination and tube lengths. The optimum sucrose concentration for pollen germination (30%) and pollen tube growth (20%) differed markedly with very little (<lo%) germination occurring in the absence of sucrose. The interaction of sucrose and boric acid was significant. However, in general both pollen germination and pollen tube growth were increased by the addition of up to 100 ppm boric acid, but above this level the response plateauxed. The four species differed significantly in their pattern of response to both boric acid and sucrose and the predicted optima derived from analysis of response surfaces differed between species. The predicted sucrose concentration for optimal germination and growth of E. urnigera pollen was consistently less than the other species and in terms of the optimal level of boric acid for pollen tube growth species can be ranked in the order E. globulus > E. ovata > E. morrisbyi = E. urnigera. Pollen germination and tube growth of all four species on a medium comprising 20% sucrose and 200 ppm boric acid would not differ significantly from the observed maximum response of each species and this could suffice as a generalised medium. However, if only percentage germination is to be assessed 30% sucrose would be preferable. It is argued that subtle interspecific differences in optimal in vitro con- ditions for pollen germination and pollen tube growth are likely to reflect differences in pollen physiology which in vivo may have important implications for the success of hybridisation where pollen competition occurs.


Sign in / Sign up

Export Citation Format

Share Document