pollen tubes
Recently Published Documents


TOTAL DOCUMENTS

951
(FIVE YEARS 124)

H-INDEX

71
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Patricia Scholz ◽  
Přemysl Pejchar ◽  
Max Fernkorn ◽  
Eliška Škrabálková ◽  
Roman Pleskot ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 13067
Author(s):  
Juan Vicente Muñoz-Sanz ◽  
Alejandro Tovar-Méndez ◽  
Lu Lu ◽  
Ru Dai ◽  
Bruce McClure

Tomato clade species (Solanum sect. Lycopersicon) display multiple interspecific reproductive barriers (IRBs). Some IRBs conform to the SI x SC rule, which describes unilateral incompatibility (UI) where pollen from SC species is rejected on SI species’ pistils, but reciprocal pollinations are successful. However, SC x SC UI also exists, offering opportunities to identify factors that contribute to S-RNase-independent IRBs. For instance, SC Solanum pennellii LA0716 pistils only permit SC Solanum lycopersicum pollen tubes to penetrate to the top third of the pistil, while S. pennellii pollen penetrates to S. lycopersicum ovaries. We identified candidate S. pennellii LA0716 pistil barrier genes based on expression profiles and published results. CRISPR/Cas9 mutants were created in eight candidate genes, and mutants were assessed for changes in S. lycopersicum pollen tube growth. Mutants in a gene designated Defective in Induced Resistance 1-like (SpDIR1L), which encodes a small cysteine-rich protein, permitted S. lycopersicum pollen tubes to grow to the bottom third of the style. We show that SpDIR1L protein accumulation correlates with IRB strength and that species with weak or no IRBs toward S. lycopersicum pollen share a 150 bp deletion in the upstream region of SpDIR1L. These results suggest that SpDIR1L contributes to an S-RNase-independent IRB.


2021 ◽  
Vol 22 (23) ◽  
pp. 12850
Author(s):  
Li You ◽  
Li Yu ◽  
Ronghong Liang ◽  
Ruhao Sun ◽  
Fan Hu ◽  
...  

Double fertilization is a key determinant of grain yield, and the failure of fertilization during hybridization is one important reason for reproductive isolation. Therefore, fertilization has a very important role in the production of high-yield and well-quality hybrid of rice. Here, we used RNA sequencing technology to study the change of the transcriptome during double fertilization with the help of the mutant fertilization barrier (feb) that failed to finish fertilization process and led to seed abortion. The results showed that 1669 genes were related to the guided growth of pollen tubes, 332 genes were involved in the recognition and fusion of the male–female gametes, and 430 genes were associated with zygote formation and early free endosperm nuclear division. Among them, the genes related to carbohydrate metabolism; signal transduction pathways were enriched in the guided growth of pollen tubes, the genes involved in the photosynthesis; fatty acid synthesis pathways were activated by the recognition and fusion of the male–female gametes; and the cell cycle-related genes might play an essential role in zygote formation and early endosperm nuclear division. Furthermore, among the 1669 pollen tube-related genes, it was found that 7 arabinogalactan proteins (AGPs), 1 cysteine-rich peptide (CRP), and 15 receptor-like kinases (RLKs) were specifically expressed in anther, while 2 AGPs, 7 CRPs, and 5 RLKs in pistil, showing obvious unequal distribution which implied they might play different roles in anther and pistil during fertilization. These studies laid a solid foundation for revealing double fertilization mechanism of rice and for the follow-up investigation.


2021 ◽  
Author(s):  
Hannah E Krawczyk ◽  
Alexander Helmut Rotsch ◽  
Cornelia Herrfurth ◽  
Patricia Scholz ◽  
Orr Shomroni ◽  
...  

After reaching the stigma, pollen grains germinate and form a pollen tube that transports the sperm cells to the ovule. Due to selection pressure between pollen tubes, they likely evolved mechanisms to quickly adapt to temperature changes to sustain an elongation at the highest possible rate. We investigated these adaptions in Nicotiana tabacum pollen tubes grown in vitro under 22 °C and 37 °C by a multi-omic approach including lipidomic, metabolomic and transcriptomic analysis. Both glycerophospholipids and galactoglycerolipids increased in saturated acyl chains under heat stress while triacylglycerols changed less in respect to desaturation but showed higher levels. Free sterol composition was altered, and sterol ester levels decreased. The levels of sterylglycosides and several sphingolipid classes and species were augmented. Most amino acids increased during heat stress, including the non-codogenic amino acids γ-amino butyrate and pipecolate. Furthermore, the sugars sedoheptulose and sucrose showed higher levels. Also the transcriptome underwent pronounced changes with 1,570 of 24,013 genes being differentially up- and 813 being downregulated. Transcripts coding for heat shock proteins and many transcriptional regulators were most strongly upregulated, but also transcripts that have so far not been linked to heat stress. Transcripts involved in triacylglycerol synthesis were increased, while the modulation of acyl chain desaturation seemed not to be transcriptionally controlled indicating other means of regulation.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1797
Author(s):  
Jie Yu ◽  
Baoan Wang ◽  
Wenqi Fan ◽  
Songbo Fan ◽  
Ya Xu ◽  
...  

Apple exhibits typical gametophytic self-incompatibility, in which self-S-RNase can arrest pollen tube growth, leading to failure of fertilization. To date, there have been few studies on how to resist the toxicity of self-S-RNase. In this study, pollen tube polyamines were found to respond to self-S-RNase and help pollen tubes defend against self-S-RNase. In particular, the contents of putrescine, spermidine, and spermine in the pollen tube treated with self-S-RNase were substantially lower than those treated with non-self-S-RNase. Further analysis of gene expression of key enzymes in the synthesis and degradation pathways of polyamines found that the expression of DIAMINE OXIDASE 4 (MdDAO4) as well as several polyamine oxidases such as POLYAMINE OXIDASES 3 (MdPAO3), POLYAMINE OXIDASES 4 (MdPAO4), and POLYAMINE OXIDASES 6 (MdPAO6) were significantly up-regulated under self-S-RNase treatment, resulting in the reduction of polyamines. Silencing MdPAO6 in pollen tubes alleviates the inhibitory effect of self-S-RNase on pollen tube growth. In addition, exogenous polyamines also enhance pollen tube resistance to self-S-RNase. Transcriptome sequencing data found that polyamines may communicate with S-RNase through the calcium signal pathway, thereby regulating the growth of the pollen tubes. To summarize, our results suggested that polyamines responded to the self-incompatibility reaction and could enhance pollen tube tolerance to S-RNase, thus providing a potential way to break self-incompatibility in apple.


2021 ◽  
Vol 22 (22) ◽  
pp. 12230
Author(s):  
Kayleigh J. Robichaux ◽  
Ian S. Wallace

In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ferdousse Laggoun ◽  
Nusrat Ali ◽  
Sabine Tourneur ◽  
Grégoire Prudent ◽  
Bruno Gügi ◽  
...  

To date, it is widely accepted by the scientific community that many agricultural regions will experience more extreme temperature fluctuations. These stresses will undoubtedly impact crop production, particularly fruit and seed yields. In fact, pollination is considered as one of the most temperature-sensitive phases of plant development and until now, except for the time-consuming and costly processes of genetic breeding, there is no immediate alternative to address this issue. In this work, we used a multidisciplinary approach using physiological, biochemical, and molecular techniques for studying the effects of two carbohydrate-based natural activators on in vitro tomato pollen germination and pollen tube growth cultured in vitro under cold conditions. Under mild and strong cold temperatures, these two carbohydrate-based compounds significantly enhanced pollen germination and pollen tube growth. The two biostimulants did not induce significant changes in the classical molecular markers implicated in pollen tube growth. Neither the number of callose plugs nor the CALLOSE SYNTHASE genes expression were significantly different between the control and the biostimulated pollen tubes when pollens were cultivated under cold conditions. PECTIN METHYLESTERASE (PME) activities were also similar but a basic PME isoform was not produced or inactive in pollen grown at 8°C. Nevertheless, NADPH oxidase (RBOH) gene expression was correlated with a higher number of viable pollen tubes in biostimulated pollen tubes compared to the control. Our results showed that the two carbohydrate-based products were able to reduce in vitro the effect of cold temperatures on tomato pollen tube growth and at least for one of them to modulate reactive oxygen species production.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaobing Kou ◽  
Jiangmei Sun ◽  
Peng Wang ◽  
Danqi Wang ◽  
Peng Cao ◽  
...  

AbstractRapid alkalinization factors (RALFs) are cysteine-rich peptides that play important roles in a variety of biological processes, such as cell elongation and immune signaling. Recent studies in Arabidopsis have shown that RALFs regulate pollen tube growth via plasma membrane receptor-like kinases (RLKs). However, the downstream signal transduction mechanisms of RLKs in pollen tubes are unknown. Here, we identified PbrRALF2, a pear (Pyrus bretschneideri) pollen RALF peptide that inhibits pollen tube growth. We found that PbrRALF2 interacts with a malectin-like domain-containing RLK, PbrCrRLK1L13. The relative affinity between PbrRALF2 and PbrCrRLK1L13 was at the submicromolar level, which is consistent with the values of ligand–receptor kinase pairs and the physiological concentration for PbrRALF2-mediated inhibition of pollen tube growth. After binding to its extracellular domain, PbrRALF2 activated the phosphorylation of PbrCrRLK1L13 in a dose-dependent manner. We further showed that the MAP kinase PbrMPK18 is a downstream target of PbrCrRLK1L13 that mediates PbrRALF2-elicited reactive oxygen species (ROS) production. The excessive accumulation of ROS inhibits pollen tube growth. We show that MPK acts as a mediator for CrRLK1L to stimulate ROS production, which might represent a general mechanism by which RALF and CrRLK1L function in signaling pathways.


2021 ◽  
Author(s):  
Татьяна Салтанович ◽  
◽  
Людмила Анточ ◽  
А. Дончилэ ◽  
◽  
...  

On the example of F1 hybrid combinations and tomato varieties, the possibility of the assessing method for pollen selection on the responses of male gametophytes under conditions of viral pathogenesis and drought has been shown. It was found the action of factors on the pollen viability and on the rate of pollen tubes growth, leading to the manifestation of differential reactions. The viruses are the main sources of variability of the pollen functional traits, while the effect of water deficit and genotype are considerably weaker. Genotypes that combine the high viability of pollen with the ability to form longer pollen tubes under the complementary action of viruses and water deficit have been identified, suggesting the prospect of these genotypes using in further breeding studies.


Sign in / Sign up

Export Citation Format

Share Document