Estimating Soil Water Retention from Soil Physical Properties and Characteristics

Author(s):  
W. J. Rawls ◽  
T. J. Gish ◽  
D. L. Brakensiek
1988 ◽  
Vol 24 (3) ◽  
pp. 375-384 ◽  
Author(s):  
N. R. Hulugalle ◽  
M. S. Rodriguez

SUMMARYThe soil physical properties of tied ridges were measured in a trial, established in 1983, comparing three treatments: handhoe cultivation and planting on the flat; planting directly without any cultivation on tied ridges constructed the previous year; and handhoe cultivation and remoulding of tied ridges constructed the previous year. Two maize varieties and two management levels were used. The soil properties monitored were particle size distribution, penetro-meter resistance in the surface 20 mm, bulk density, water infiltration, soil water retention and soil temperature.Soil physical properties were affected mainly by the type of seedbed. Clay content in the surface 0.05 m was greater with tied ridging, with that in the furrows being higher than that in the ridge slopes. Daily maximum soil temperature was greatest in the flat planted plots and in the ridge slopes of the tied ridged plots. Penetrometer resistance at a soil water content of 0.05 kg kg−1 was greater in the tied ridged plots. Cumulative infiltration after 2 h was greatest with flat planting. The bulk density of ridge slopes in tied ridged plots was less than that in the furrows and in the flat planted plots. Soil water retention was greatest in the furrows of the tied ridged plots. Clay content was the major factor determining all the soil physical properties measured.


2009 ◽  
Vol 66 (3) ◽  
pp. 338-352 ◽  
Author(s):  
Marcos Bacis Ceddia ◽  
Sidney Rosa Vieira ◽  
André Luis Oliveira Villela ◽  
Lenilson dos Santos Mota ◽  
Lúcia Helena Cunha dos Anjos ◽  
...  

Among the soil formation factors, relief is one of the most used in soil mapping, because of its strong correlation with the spatial variability of soil attributes over a landscape. In this study the relationship between topography and the spatial variability of some soil physical properties was evaluated. The study site, a pasture with 2.84 ha, is located near Seropédica, Rio de Janeiro State, Brazil, where a regular square grid with 20 m spacing was laid out and georreferenced. In each sampling point, altitude was measured and undisturbed soil samples were collected, at 0.0-0.1, 0.1-0.2, and 0.2-0.3 m depths. Organic carbon content, soil texture, bulk density, particle density, and soil water retention at 10 (Field Capacity), 80 (limit of tensiometer reading) and 1500 kPa (Permanent Wilting Point) were determined. Descriptive statistics was used to evaluate central tendency and dispersion parameters of the data. Semivariograms and cross semivariograms were calculated to evaluate the spatial variability of elevation and soil physical attributes, as well as, the relation between elevation and soil physical attributes. Except for silt fraction content (at the three depths), bulk density (at 0.2-0.3 m) and particle density (at 0.0-0.1 m depth), all soil attributes showed a strong spatial dependence. Areas with higher elevation presented higher values of clay content, as well as soil water retention at 10, 80 and 1500 kPa. The correlation between altitude and soil physical attributes decreased as soil depth increased. The cross semivariograms demonstrated the viability in using altitude as an auxiliary variable to improve the interpolation of sand and clay contents at the depth of 0.0-0.3 m, and of water retention at 10, 80 and 1500 kPa at the depth of 0.0-0.2 m.


Soil Research ◽  
2009 ◽  
Vol 47 (8) ◽  
pp. 821 ◽  
Author(s):  
Zhenying Wang ◽  
Qiaosheng Shu ◽  
Zuoxin Liu ◽  
Bingcheng Si

Measurement scale of soil water retention parameters is often different from the application scale. Knowledge of scaling property of soil hydraulic parameters is important because scaling allows information to be transferred from one scale to another. The objective of this study is to examine whether these parameters have fractal scaling properties in a cultivated agricultural soil in China. Undisturbed soil samples (128) were collected from a 640-m transect at Fuxin, China. Soil water retention curve and soil physical properties were measured from each sample, and residual water content (θr), saturated soil water content (θs), and parameters αvG and n of the van Genuchten water retention function were determined by curve-fitting. In addition, multiple scale variability was evaluated through multifractal analyses. Mass probability distribution of all properties was related to the support scale in a power law manner. Some properties such as sand content, silt content, θs, and n had mono-fractal scaling behaviour, indicating that, whether for high or low data values, they can be upscaled from small-scale measurements to large-scale applications using the measured data. The spatial distribution of organic carbon content had typically multifractal scaling property, and other properties – clay content, θr, and αvG – showed a weakly multifractal distribution. The upscaling or downscaling of multifractal distribution was more complex than that of monofractal distribution. It also suggested that distinguishing mono-fractals and multifractals is important for understanding the underlying processes, for simulation and for spatial interpolation of soil water retention characteristics and physical properties.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1588
Author(s):  
Shufang Liu ◽  
Zuoqiang Yuan ◽  
Arshad Ali ◽  
Anvar Sanaei ◽  
Zikun Mao ◽  
...  

Soil’s water-physical properties support essential soil water retention functions for driving water distribution and availability, which is vital for plant growth and biogeochemical cycling. However, the question concerning how tree compositions and their interactions with other abiotic factors modulate soil’s water-physical properties in disturbed forests remains poorly understood. Based on observational data from nine permanent forest sites (18,747 trees and 210 plots) in the northeast of China, where forests once undergone three different levels of anthropogenic logging disturbance, we evaluated how multiple biotic (i.e., tree diversity and functional trait composition) and abiotic (soil texture and soil organic carbon) factors influence water-physical properties (i.e., in terms of soil capillary water retention (WC) and soil saturated water retention (WS)) in temperate forests. We found that the impacts of logging disturbance on soil water-physical properties were associated with improved tree diversity, acquisitive functional traits, and SOC. These associated attributes were also positively related to WC and WS, while there was no significant effect from soil texture. Moreover, disturbance indirectly affected soil water-physical properties mainly by functional traits and SOC, as acquisitive functional traits significantly mediate the effect from disturbance on WC and SOC mediates the influence from disturbance on WS. Finally, our results emphasize the potential relationships of tree composition with SOC and soil water retention as compared with soil texture and hence suggest that plants can actively modulate their abiotic contexts after disturbance, which is meaningful for understanding forest health and resistance.


2021 ◽  
Author(s):  
Hong Zhao ◽  
Yijian Zeng ◽  
Xujun Han ◽  
Bob Su

<p>Basic soil physical properties (i.e., soil texture and organic matter) and associated soil hydraulic properties (i.e., soil water retention curve and hydraulic conductivity) play an essential role in land surface models (LSMs) for estimating soil moisture. With the physical link between soil properties, LSMs and Radiative Transfer Models (RTMs), the soil physical properties can be retrieved, using a LSM coupled with a microwave L-band emission observation model in a data assimilation framework. To this purpose, this paper couples an enhanced physically-based discrete scattering-emission model with the Community Land Model 4.5 (CLM), to retreive soil physical properties using the Local Ensemble Transform Kalman Filter (LETKF) algorithm, assimilating Soil Moisture Active and Passive (SMAP) Level-1C (L1C) brightness temperature at H and V polarization ( and ) separately, assisted with in situ measurements at the Maqu site on the eastern Tibetan Plateau. Results show the improved estimate of soil properties at the topmost layer via assimilating SMAP ( H, V), as well as at profile using the retrieved top-layer soil properties and a prior depth ratio. The use of  and  shows varied sensitivities to retrievals of different soil compositions (i.e., sand, clay, silt) and soil moisture estimates. However, analyses show that the retrieved soil properties with fine accuracy are not sensitive factors affecting soil moisture estimates. Instead, uncertainties of CLM model structures shall be considered, such as the fixed PTFs (pedotransfer functions), the hydraulic function describing soil water retention curve and the water stress function determining root water update.</p>


2017 ◽  
Vol 16 (4) ◽  
pp. 869-877
Author(s):  
Vasile Lucian Pavel ◽  
Florian Statescu ◽  
Dorin Cotiu.ca-Zauca ◽  
Gabriela Biali ◽  
Paula Cojocaru

2021 ◽  
pp. 51495
Author(s):  
Ruth M. Barajas‐Ledesma ◽  
Vanessa N. L. Wong ◽  
Karen Little ◽  
Antonio F. Patti ◽  
Gil Garnier

Sign in / Sign up

Export Citation Format

Share Document