soil water holding capacity
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 3)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Ying Zhang ◽  
Beibei Zhang ◽  
Qing Xu ◽  
Deqiang Gao ◽  
Wenbin Xu ◽  
...  

The climate-induced changes in soil water patterns pose a serious threat to subtropical plantations. Mixed species stands have been advocated as an efficient way to enhance ecosystem stability. However, little is known about their possible impact on the soil water-holding capacity in the subtropics. In this study, we employed a stable hydrogen isotope to assess the contribution of rainfall to soil water (CRSW) in a pure Chinese fir (Cunninghamia lanceolata) plantation and in two mixtures of Chinese fir with Cinnamomum camphora or with Alnus cremastogyne after three different magnitudes of rainfall events in subtropical China. Furthermore, we used structure equation modeling (SEM) to quantify the relative importance of vegetation and soil properties on the CRSW. The results indicated that the CRSW did not differ among these three Chinese fir plantations after light rainfall, whereas the CRSW of moderate and heavy rainfall to soil water were 15.95% and 26.06% higher in Chinese fir plantation with Cinnamomum camphora, and 22.67% and 22.93% higher in Chinese fir plantation with Alnus cremastogyne than that in the pure Chinese fir plantation, respectively. SEM analysis showed that the vegetation biomass and soil properties significantly affected the CRSW following light rainfall, but the soil properties were the most important factors influencing the CRSW under moderate and heavy rainfall. Our findings demonstrate that the mixed conifer–broad-leaved plantation is a more effective strategy for improving the soil water-holding capacity than the pure conifer plantation in subtropical regions, which is conducive to coping with the frequent seasonal droughts and extreme precipitation events.


2021 ◽  
Author(s):  
Yves Tramblay ◽  
Pere Quintana Seguí

Abstract. Soil moisture is a key variable for drought monitoring but soil moisture measurements networks are very scarce. Land-surface models can provide a valuable alternative to simulate soil moisture dynamics, but only a few countries have such modelling schemes implemented for monitoring soil moisture at high spatial resolution. In this study, a soil moisture accounting model (SMA) was regionalized over the Iberian Peninsula, taking as a reference the soil moisture simulated by a high-resolution land surface model. To estimate soil water holding capacity, the parameter required to run the SMA model, two approaches were compared: the direct estimation from European soil maps using pedotransfer functions, or an indirect estimation by a Machine Learning approach, Random Forests, using as predictors altitude, temperature, precipitation, evapotranspiration and land use. Results showed that the Random Forest model estimates are more robust, especially for estimating low soil moisture levels. Consequently, the proposed approach can provide an efficient way to simulate daily soil moisture and therefore monitor soil moisture droughts, in contexts where high-resolution soil maps are not available, as it relies on a set of covariates that can be reliably estimated from global databases.


2021 ◽  
Vol 17 ◽  
Author(s):  
Pierre Beukes ◽  
Andrea Babylon ◽  
Wendy Griffiths ◽  
Simon Woodward ◽  
Electra Kalaugher ◽  
...  

The objective of this study was to predict the future performance of perennial ryegrass in the Upper North Island, New Zealand. The Basic Grassland model, BASGRA, was used with historic, current and future daily climate data as input, and soil water holding capacity, to predict changes in perennial ryegrass performance in space and time. The study focussed on land of ≤7° slope north of the town of Tokoroa and considered two potential warming pathways to the end of the 21st century. Persistence was defined as the time in years for the ryegrass sward to decline to 50% ground cover. The results for the two climate pathways were largely consistent with each other. Persistence should remain in the medium category (2.5-3.4 years, 10-12 t DM/ha) for the rest of this century for Bay of Islands, Whangarei, South Waikato/Tokoroa, and Rotorua. Persistence is predicted to change from medium to predominantly low (0-2.4 years, <10 t DM/ha) for Far North, Dargaville, DairyFlat/Rodney, Waiuku/Pukekohe and northern and central parts of Waikato. Coastal regions of Bay of Plenty were predicted to be poorly suited to perennial ryegrass and to remain so into the rest of the century. Large parts of the Upper North Island that are currently borderline for perennial ryegrass are predicted to become unsuitable for the species.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1681
Author(s):  
Ahmed M. Abdallah ◽  
Hanuman S. Jat ◽  
Madhu Choudhary ◽  
Emad F. Abdelaty ◽  
Parbodh C. Sharma ◽  
...  

Improving soil water holding capacity (WHC) through conservation agriculture (CA)-practices, i.e., minimum mechanical soil disturbance, crop diversification, and soil mulch cover/crop residue retention, could buffer soil resilience against climate change. CA-practices could increase soil organic carbon (SOC) and alter pore size distribution (PSD); thus, they could improve soil WHC. This paper aims to review to what extent CA-practices can influence soil WHC and water-availability through SOC build-up and the change of the PSD. In general, the sequestered SOC due to the adoption of CA does not translate into a significant increase in soil WHC, because the increase in SOC is limited to the top 5–10 cm, which limits the capacity of SOC to increase the WHC of the whole soil profile. The effect of CA-practices on PSD had a slight effect on soil WHC, because long-term adoption of CA-practices increases macro- and bio-porosity at the expense of the water-holding pores. However, a positive effect of CA-practices on water-saving and availability has been widely reported. Researchers attributed this positive effect to the increase in water infiltration and reduction in evaporation from the soil surface (due to mulching crop residue). In conclusion, the benefits of CA in the SOC and soil WHC requires considering the whole soil profile, not only the top soil layer. The positive effect of CA on water-saving is attributed to increasing water infiltration and reducing evaporation from the soil surface. CA-practices’ effects are more evident in arid and semi-arid regions; therefore, arable-lands in Sub-Sahara Africa, Australia, and South-Asia are expected to benefit more. This review enhances our understanding of the role of SOC and its quantitative effect in increasing water availability and soil resilience to climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ting Wang ◽  
Qing Xu ◽  
Deqiang Gao ◽  
Beibei Zhang ◽  
Haijun Zuo ◽  
...  

AbstractForest management practices play an important role in regulating the soil water-holding capacity of plantation. However, most studies focus on soil water dynamics present during large-scale forest loss and afforestation events, while little is known about how soil water under different forest management practices responds to rainfall events and which factors mainly regulate soil water-holding capacity. In this study, a stable hydrogen isotope was used to explore the contribution of three natural rainfall events (8.9, 13.3 and 67.7 mm) to soil water (CRSW) in a Pinus massoniana plantation under four forest management practices (no thinning (NTN), understory removal (USR), light-intensity thinning (LIT) and heavy-intensity thinning (HIT)) in the Three Gorges Reservoir Area of the Yangtze River Basin in China. Furthermore, a structural equation model was employed to determine the effects of vegetation biomass and soil properties on the CRSW. The results showed that plantation soil under different forest management practices exhibited different water-holding capacities. Following light (8.9 mm) and moderate (13.3 mm) rainfall events, the CRSW in the HIT stand was slightly higher than that in the other stands. Following heavy (66.7 mm) rainfall event, the CRSW of most layers in USR stand was not different from the other three stands, while the CRSW in the LIT and NTN stands was significantly higher than that in the HIT stand in the 0–100 cm soil layers, suggesting that soil in the LIT and NTN stands had a greater water-holding capacity than that in the HIT stand. In addition, soil properties were the main factors directly affecting the CRSW, explaining 60% and 37% of the variation in the CRSW on the first and seventh days after heavy rainfall, respectively. Overall, compared to the HIT stand, the LIT and NTN stands showed greater capacity in retaining rainwater. Therefore, under expected global changes with frequent occurrences of extreme precipitation events, methods involving light-intensity and no thinning should be employed to build up soil and water conservation functions, which will be critical for keeping water-holding capacity and moderating floods.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 698
Author(s):  
Brendan Nicholas Marais ◽  
Philip Bester van Niekerk ◽  
Christian Brischke

In this article a dose–response model was developed to describe the effect of soil temperature, soil moisture content, and soil water-holding capacity, on the decay of European beech (Fagus sylvatica) wood specimens exposed to soil contact. The developed dose–response model represents a step forward in incorporating soil-level variables into the prediction of wood decay over time. This builds upon prior models such as those developed within the TimberLife software package, but also aligns with similar modeling methodology employed for wood exposed above ground. The model was developed from laboratory data generated from terrestrial microcosm trials which used test specimens of standard dimension, incubated in a range of soil conditions and temperatures, for a maximum period of 16 weeks. Wood mass loss was used as a metric for wood decay. The dose aspect of the developed function modelled wood mass loss in two facets; soil temperature against wood mass loss, and soil water-holding capacity and soil moisture content against wood mass loss. In combination, the two functions describe the wood mass loss as a function of a total daily exposure dose, accumulated over the exposure period. The model was deemed conservative, delivering an overprediction of wood decay, or underprediction of wood service-life, when validated on a similar, but independent dataset (R2 = 0.65). Future works will develop similar models for outdoor, field-trial datasets as a basis for service-life prediction of wooden elements used in soil contact.


2021 ◽  
Vol 4 ◽  
Author(s):  
Srinivasulu Ale ◽  
Sushil K. Himanshu ◽  
Steven A. Mauget ◽  
Darren Hudson ◽  
Tim S. Goebel ◽  
...  

In the Texas High Plains (THP), diminishing irrigation well-capacities, and increasing costs of energy and equipment associated with groundwater extraction and application are contributing factors to a transition from irrigated to dryland agriculture. The primary goal of this modeling exercise was to investigate whether and to what extent hypothetical changes in factors putatively associated with soil health would affect dryland cotton (Gossypium hirsutum L.) yields. The factors selected were drainage, surface runoff, soil water holding capacity, soil organic carbon (SOC) and albedo. As a first analysis to evaluate these factors, we used the CROPGRO-Cotton module within the Decision Support System for Agrotechnology Transfer (DSSAT) cropping system model. Specifically, we evaluated the effects of reduced surface runoff, increased soil water holding capacity, and SOC, doubling of the soil albedo through stubble mulching, and of soil drainage by enhancing infiltration with no-tillage/cover crops on yield by adjusting related soil properties. In our analysis, we used mean yields simulated with soil properties of a Pullman clay loam soil at Halfway, TX on the THP as baseline, which were compared to values obtained with the adjusted factors using weather data from 2005 to 2019. Simulated mean yield increased by 27% when the soil water holding capacity was increased by 25 mm, 7% when the runoff curve number was decreased from 73 to 60, 16% when soil albedo was increased from 0.2 to 0.4, and by 58% when the soil drainage factor (fraction day−1) was doubled from 0.2. No significant statistical change in simulated mean yield was calculated when SOC was increased by 1%. Further, effects of a 50 mm pre-plant irrigation were also assessed, simulating limited irrigation in the transition to dryland agriculture that resulted in a statistically insignificant 12% increase in seed-cotton yield. Simultaneous implementation of the four statistically significant individual scenarios (increased water holding capacity, infiltration, albedo, and drainage) resulted in the highest increase (93%) in mean seed-cotton yield. An economic and risk analysis of simulated yields under different scenarios indicated that these factors could reduce revenue risk for dryland cotton producers, with most of the effect from soil drainage improvements.


Sign in / Sign up

Export Citation Format

Share Document