Effects of Collapsing Data from Crossover Designs

Author(s):  
John W. Cotton
Keyword(s):  
Author(s):  
Dan-Yu Lin ◽  
Donglin Zeng ◽  
Peter B Gilbert

Abstract Large-scale deployment of safe and durably effective vaccines can curtail the COVID-19 pandemic.1−3 However, the high vaccine efficacy (VE) reported by ongoing phase 3 placebo-controlled clinical trials is based on a median follow-up time of only about two months4−5 and thus does not pertain to long-term efficacy. To evaluate the duration of pro- tection while allowing trial participants timely access to efficacious vaccine, investigators can sequentially cross participants over from the placebo arm to the vaccine arm according to priority groups. Here, we show how to estimate potentially time-varying placebo-controlled VE in this type of staggered vaccination of participants. In addition, we compare the per- formance of blinded and unblinded crossover designs in estimating long-term VE.


Author(s):  
Scott D. Patterson ◽  
Byron Jones ◽  
N��vine Zariffa

Biometrika ◽  
1987 ◽  
Vol 74 (2) ◽  
pp. 321-328 ◽  
Author(s):  
J. G. PIGEON ◽  
D. RAGHAVARAO
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Math J. J. M. Candel

If there are no carryover effects, AB/BA crossover designs are more efficient than parallel (A/B) and extended parallel (AA/BB) group designs. This study extends these results in that (a) optimal instead of equal treatment allocation is examined, (b) allowance for treatment-dependent outcome variances is made, and (c) next to treatment effects, also treatment by period interaction effects are examined. Starting from a linear mixed model analysis, the optimal allocation requires knowledge on intraclass correlations in A and B, which typically is rather vague. To solve this, maximin versions of the designs are derived, which guarantee a power level across plausible ranges of the intraclass correlations at the lowest research costs. For the treatment effect, an extensive numerical evaluation shows that if the treatment costs of A and B are equal, or if the sum of the costs of one treatment and measurement per person is less than the remaining subject-specific costs (e.g., recruitment costs), the maximin crossover design is most efficient for ranges of intraclass correlations starting at 0.15 or higher. For other cost scenarios, the maximin parallel or extended parallel design can also become most efficient. For the treatment by period interaction, the maximin AA/BB design can be proven to be the most efficient. A simulation study supports these asymptotic results for small samples.


2021 ◽  
Vol 15 (4) ◽  
Author(s):  
C. Neumann ◽  
J. Kunert

AbstractIn crossover designs, each subject receives a series of treatments, one after the other in p consecutive periods. There is concern that the measurement of a subject at a given period might be influenced not only by the direct effect of the current treatment but also by a carryover effect of the treatment applied in the preceding period. Sometimes, the periods of a crossover design are arranged in a circular structure. Before the first period of the experiment itself, there is a run-in period, in which each subject receives the treatment it will receive again in the last period. No measurements are taken during the run-in period. We consider the estimate for direct effects of treatments which is not corrected for carryover effects. If there are carryover effects, this uncorrected estimate will be biased. In that situation, the quality of the estimate can be measured by the mean square error, the sum of the squared bias and the variance. We determine MSE-optimal designs, that is, designs for which the mean square error is as small as possible. Since the optimal design will in general depend on the size of the carryover effects, we also determine the efficiency of some designs compared to the locally optimal design. It turns out that circular neighbour-balanced designs are highly efficient.


Biometrics ◽  
1992 ◽  
Vol 48 (4) ◽  
pp. 1157 ◽  
Author(s):  
Keumhee Chough Carriere ◽  
Gregory C. Reinsel
Keyword(s):  

1996 ◽  
Vol 7 (3-4) ◽  
pp. 317
Author(s):  
John C. Sourby ◽  
Cathy Walchak ◽  
Carol Buzzuffi ◽  
Donna Riggi

Healthcare ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 137 ◽  
Author(s):  
J. Blackston ◽  
Andrew Chapple ◽  
James McGree ◽  
Suzanne McDonald ◽  
Jane Nikles

Background: N-of-1 trials offer an innovative approach to delivering personalized clinical care together with population-level research. While increasingly used, these methods have raised some statistical concerns in the healthcare community. Methods: We discuss concerns of selection bias, carryover effects from treatment, and trial data analysis conceptually, then rigorously evaluate concerns of effect sizes, power and sample size through simulation study. Four variance structures for patient heterogeneity and model error are considered in a series of 5000 simulated trials with 3 cycles, which compare aggregated N-of-1 trials to parallel randomized controlled trials (RCTs) and crossover trials. Results: Aggregated N-of-1 trials outperformed both traditional parallel RCT and crossover designs when these trial designs were simulated in terms of power and required sample size to obtain a given power. N-of-1 designs resulted in a higher type-I error probability than parallel RCT and cross over designs when moderate-to-strong carryover effects were not considered or in the presence of modeled selection bias. However, N-of-1 designs allowed better estimation of patient-level random effects. These results reinforce the need to account for these factors when planning N-of-1 trials. Conclusion: N-of-1 trial designs offer a rigorous method for advancing personalized medicine and healthcare with the potential to minimize costs and resources. Interventions can be tested with adequate power with far fewer patients than traditional RCT and crossover designs. Operating characteristics compare favorably to both traditional RCT and crossover designs.


Sign in / Sign up

Export Citation Format

Share Document