Some Results on Reaction Diffusion Equations with Initial Time Difference

Author(s):  
Aghalaya S. Vatsala
2020 ◽  
Vol 20 (02) ◽  
pp. 2050041
Author(s):  
Lu Yang ◽  
Meihua Yang ◽  
Peter Kloeden

Random attractors and their higher-order regularity properties are studied for stochastic reaction–diffusion equations on time-varying domains. Some new a priori estimates for the difference of solutions near the initial time and the continuous dependence in initial data in [Formula: see text] are proved. Then attraction of the random attractors in the higher integrability space [Formula: see text] for any [Formula: see text] and the regular space [Formula: see text] is established.


2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650135 ◽  
Author(s):  
C. A. Cardoso ◽  
J. A. Langa ◽  
R. Obaya

In this paper, we describe in detail the global and cocycle attractors related to nonautonomous scalar differential equations with diffusion. In particular, we investigate reaction–diffusion equations with almost-periodic coefficients. The associated semiflows are strongly monotone which allow us to give a full characterization of the cocycle attractor. We prove that, when the upper Lyapunov exponent associated to the linear part of the equations is positive, the flow is persistent in the positive cone, and we study the stability and the set of continuity points of the section of each minimal set in the global attractor for the skew product semiflow. We illustrate our result with some nontrivial examples showing the richness of the dynamics on this attractor, which in some situations shows internal chaotic dynamics in the Li–Yorke sense. We also include the sublinear and concave cases in order to go further in the characterization of the attractors, including, for instance, a nonautonomous version of the Chafee–Infante equation. In this last case we can show exponentially forward attraction to the cocycle (pullback) attractors in the positive cone of solutions.


Sign in / Sign up

Export Citation Format

Share Document