scholarly journals Characterization of Cocycle Attractors for Nonautonomous Reaction–Diffusion Equations

2016 ◽  
Vol 26 (08) ◽  
pp. 1650135 ◽  
Author(s):  
C. A. Cardoso ◽  
J. A. Langa ◽  
R. Obaya

In this paper, we describe in detail the global and cocycle attractors related to nonautonomous scalar differential equations with diffusion. In particular, we investigate reaction–diffusion equations with almost-periodic coefficients. The associated semiflows are strongly monotone which allow us to give a full characterization of the cocycle attractor. We prove that, when the upper Lyapunov exponent associated to the linear part of the equations is positive, the flow is persistent in the positive cone, and we study the stability and the set of continuity points of the section of each minimal set in the global attractor for the skew product semiflow. We illustrate our result with some nontrivial examples showing the richness of the dynamics on this attractor, which in some situations shows internal chaotic dynamics in the Li–Yorke sense. We also include the sublinear and concave cases in order to go further in the characterization of the attractors, including, for instance, a nonautonomous version of the Chafee–Infante equation. In this last case we can show exponentially forward attraction to the cocycle (pullback) attractors in the positive cone of solutions.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Guichen Lu

We present a theoretical analysis of the attractor bifurcation for gene propagation model governed by reaction-diffusion equations. We investigate the dynamical transition problems of the model under the homogeneous boundary conditions. By using the dynamical transition theory, we give a complete characterization of the bifurcated objects in terms of the biological parameters of the problem.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Santosh Dubey ◽  
S. K. Joshi ◽  
B. S. Tewari

The stability of a binary solid solution under irradiation has been studied. This has been done by performing linear stability analysis of a set of nonlinear reaction-diffusion equations under uniform irradiation. Owing to the complexity of the resulting system of eigenvalue equations, a numerical solution has been attempted to calculate the dispersion relations. The set of reaction-diffusion equations represent the coupled dynamics of vacancies, dumbbell-type interstitials, and lattice atoms. For a miscible system (Cu-Au) under uniform irradiation, the initiation and growth of the instability have been studied as a function of various control parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dongfang Li ◽  
Chao Tong ◽  
Jinming Wen

This paper is concerned with the stability of non-Fickian reaction-diffusion equations with a variable delay. It is shown that the perturbation of the energy function of the continuous problems decays exponentially, which provides a more accurate and convenient way to express the rate of decay of energy. Then, we prove that the proposed numerical methods are sufficient to preserve energy stability of the continuous problems. We end the paper with some numerical experiments on a biological model to confirm the theoretical results.


2020 ◽  
Vol 12 (1) ◽  
pp. 15-24
Author(s):  
Gashu Gadisa Kiltu ◽  
Gemechis File Duressa ◽  
Tesfaye Aga Bullo

This paper presents a uniform convergent numerical method for solving singularly perturbed delay reaction-diffusion equations. The stability and convergence analysis are investigated. Numerical results are tabulated and the effect of the layer on the solution is examined. In a nutshell, the present method improves the findings of some existing numerical methods reported in the literature. Keywords: Singularly perturbed, Time delay, Reaction-diffusion equation, Layer


Author(s):  
Arnd Scheel ◽  
Erik S. Van Vleck

We show that lattice dynamical systems naturally arise on infinite-dimensional invariant manifolds of reaction–diffusion equations with spatially periodic diffusive fluxes. The result connects wave-pinning phenomena in lattice differential equations and in reaction–diffusion equations in inhomogeneous media. The proof is based on a careful singular perturbation analysis of the linear part, where the infinite-dimensional manifold corresponds to an infinite-dimensional centre eigenspace.


2019 ◽  
Vol 84 (4) ◽  
pp. 669-678
Author(s):  
Lennon Ó Náraigh ◽  
Khang Ee Pang

Abstract We develop a mathematical framework for determining the stability of steady states of generic nonlinear reaction–diffusion equations with periodic source terms in one spatial dimension. We formulate an a priori condition for the stability of such steady states, which relies only on the properties of the steady state itself. The mathematical framework is based on Bloch’s theorem and Poincaré’s inequality for mean-zero periodic functions. Our framework can be used for stability analysis to determine the regions in an appropriate parameter space for which steady-state solutions are stable.


2002 ◽  
Vol 05 (04) ◽  
pp. 433-443 ◽  
Author(s):  
E. AHMED ◽  
A. S. HEGAZI ◽  
A. S. ELGAZZAR

The stability of some spatial asymmetric games is discussed. Both linear and nonlinear asymptotic stability of asymmetric hawk-dove and prisoner's dilemma are studied. Telegraph reaction diffusion equations for the asymmetric spatial games are presented. Asymmetric games of parental investment is studied in the presence of both ordinary and cross diffusions.


Sign in / Sign up

Export Citation Format

Share Document