scholarly journals Approximating the Projective Model

Author(s):  
Evangelos Kranakis
Keyword(s):  
2016 ◽  
Vol 223 (1) ◽  
pp. 1-20 ◽  
Author(s):  
ADRIEN DUBOULOZ ◽  
TAKASHI KISHIMOTO

We show that the generic fiber of a family $f:X\rightarrow S$ of smooth $\mathbb{A}^{1}$-ruled affine surfaces always carries an $\mathbb{A}^{1}$-fibration, possibly after a finite extension of the base $S$. In the particular case where the general fibers of the family are irrational surfaces, we establish that up to shrinking $S$, such a family actually factors through an $\mathbb{A}^{1}$-fibration $\unicode[STIX]{x1D70C}:X\rightarrow Y$ over a certain $S$-scheme $Y\rightarrow S$ induced by the MRC-fibration of a relative smooth projective model of $X$ over $S$. For affine threefolds $X$ equipped with a fibration $f:X\rightarrow B$ by irrational $\mathbb{A}^{1}$-ruled surfaces over a smooth curve $B$, the induced $\mathbb{A}^{1}$-fibration $\unicode[STIX]{x1D70C}:X\rightarrow Y$ can also be recovered from a relative minimal model program applied to a smooth projective model of $X$ over $B$.


Author(s):  
Jenő Szirmai

Abstract In the present paper we study $\mathbf{S}^2\!\times\!\mathbf{R}$ and $\mathbf{H}^2\!\times\!\mathbf{R}$ geometries, which are homogeneous Thurston 3-geometries. We define and determine the generalized Apollonius surfaces and with them define the ‘surface of a geodesic triangle’. Using the above Apollonius surfaces we develop a procedure to determine the centre and the radius of the circumscribed geodesic sphere of an arbitrary $\mathbf{S}^2\!\times\!\mathbf{R}$ and $\mathbf{H}^2\!\times\!\mathbf{R}$ tetrahedron. Moreover, we generalize the famous Menelaus’s and Ceva’s theorems for geodesic triangles in both spaces. In our work we will use the projective model of $\mathbf{S}^2\!\times\!\mathbf{R}$ and $\mathbf{H}^2\!\times\!\mathbf{R}$ geometries described by E. Molnár in [6].


2011 ◽  
Vol 54 (3) ◽  
pp. 783-797 ◽  
Author(s):  
Gang Yang ◽  
Zhongkui Liu

AbstractWe show that if the given cotorsion pair $(\mathcal{A},\mathcal{B})$ in the category of modules is complete and hereditary, then both of the induced cotorsion pairs in the category of complexes are complete. We also give a cofibrantly generated model structure that can be regarded as a generalization of the projective model structure.


2016 ◽  
Vol 25 (6) ◽  
pp. 063014
Author(s):  
Ehsan Azimi ◽  
Alireza Behrad ◽  
Mohammad Bagher Ghaznavi-Ghoushchi ◽  
Jamshid Shanbehzadeh

Author(s):  
Alina I. Petrushka ◽  
Andriy M. Peleshchyshyn

1930 ◽  
Vol 26 (4) ◽  
pp. 453-457
Author(s):  
W. G. Welchman

1. It is known, from the theory of the Riemann theta-functions, that the canonical series of a general curve of genus p has 2P−1 (2P − 1) sets which consist of p − 1. points each counted twice. Taking as projective model of the curve the canonical curve of order 2p − 2 in space of p− 1 dimensions, whose canonical series is given by the intersection of primes, we have the number of contact primes of the curve. The 28 bitangents of a plane quartic curve, the canonical curve of genus 3, have been studied in detail since the days of Plücker. The number, 120, of tritangent planes of the sextic curve of intersection of a quadric and a cubic surface, the canonical curve of genus 4, has been obtained directly by correspondence arguments by Enriques. Enriques also remarks that the general formula 2P−1 (2p −1) is a special case of the formula of de Jonquières, which was proved, by correspondence methods, by Torelli§.


Sign in / Sign up

Export Citation Format

Share Document