Recent Trends in Laser Material Research

Author(s):  
R. G. Pappalardo
1974 ◽  
Author(s):  
W. C. Holton ◽  
D. W. Bellavance ◽  
F. J. Bruni ◽  
M. deWit ◽  
R. K. Watts

Author(s):  
Y. F. Lu

Laser material processing demonstrated its significance in many areas such as microelectronics, data storage, photonics and nanotechnology, since versatile laser sources provide flexible and unique energy source for precise control of material processing. With current laser technology, a short wavelength down to X-ray range and a short pulse duration down to femtosecond range can be achieved. The extreme conditions created by laser irradiation have provided strong impact on material research. To achieve nanoscale laser material machining and processing, we need to overcome the diffraction limit of the laser wavelengths. Recently, different approaches have been explored to overcome the diffraction limit and to achieve feature sizes down to 10 nm order, way beyond the diffraction limits. This paper will provide an overview in the areas of laser-based nanoscale machining and processing, including the author’s own research experience on laser-assisted scanning probe microscope, superfocusing by optical resonance in spherical particles, laser nanoimprinting, laser synthesis of quantum dots, laser annealing of ultrashow pn junctions, nanometer-order film thickness detection using rotational Raman spectroscopy, and laser cleaning of nanoparticles.


Author(s):  
Michal Košelja ◽  
Bedřich Rus ◽  
Jan Kubát ◽  
Jindřich Houžvička

Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D.J. Matlock ◽  
W.W. Fisher ◽  
P.M. Tarin ◽  
...  

Plastic deformation is a key variable producing accelerated intergranular (IG) carbide precipitation and chromium-depletion (sensitization) development in stainless steels. Deformation above 20% also produces transgranular (TG) carbides and depletion in the material. Research on TG carbides in SS is, however, limited and has indicated that the precipitation is site-specific preferring twin-fault intersections in 316 SS versus deformation-induced martensite and martensite lath-boundaries in 304 SS. Evidences indicating the relation between martensite and carbides were, however, sketchy.The objective of this work was to fundamentally understand the relationship between TG carbides and strain-induced martensite in 304 SS. Since strain-induced martensite forms at twin-fault intersections in 304 SS and the crystallography of the transformation is well understood, we believed that it could be key in understanding mechanisms of carbides and sensitization in SS. A 0.051% C, 304 SS deformed to ∽33% engineering strain (40% true strain) and heat treated at 670°C/ 0.1-10h was used for the research. The study was carried out on a Hitachi H-8000 STEM at 200 kV.


2005 ◽  
Author(s):  
Joyce Illfelder-Kaye

Sign in / Sign up

Export Citation Format

Share Document