strain induced martensite
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 44)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
pp. 56-62
Author(s):  
М.Б. Ригмант ◽  
Н.В. Казанцева ◽  
А.В. Кочнев ◽  
Ю.Н. Коэмец ◽  
Ю.В. Корх ◽  
...  

Investigations of texture, phase composition and magnetic anisotropy in rolled samples of austenitic steel 09Kh17N5Yu were carried out. It has been shown that the method of magnetic nondestructive testing using measuring of magnetic fields from locally magnetized areas is sensitive to anisotropy of magnetic permeability. Anisotropy of magnetic properties is related to formation of mechanical rolling texture. FCC rolling texture {110}<111> was found in all the rolled samples. Rolling texture, common for BCC structure (strain-induced martensite in low-carbon austenitic steels), developed in the samples with 30% of deformation or higher. Formation of ferromagnetic strain-induced martensite in austenitic steel 09Kh17N5Yu was confirmed by magnetic force microscopy.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6502
Author(s):  
Caroline Quitzke ◽  
Qiuliang Huang ◽  
Horst Biermann ◽  
Olena Volkova ◽  
Marco Wendler

In this study, the effect of interstitial contents on the mechanical properties and strain-induced martensite formation in an austenitic stainless steel was investigated. The mechanical properties of solution annealed Fe-15Cr-7Mn-4Ni-0.5Si-(0.01-0.2)N-(0.01-0.2)C concentrations in weight percent stainless steels were studied using room temperature tensile tests. All three alloys used in the present study have a sum content of C + N of about 0.2 wt.%. To verify the influence of C and N on deformation behavior, microstructural investigations are performed using light optical microscopy, scanning electron microscopy, and magnetic and hardness measurements. Moreover, strain-induced α′-martensite nucleation was characterized by scanning electron microscope using EBSD. In the present alloy system, carbon provides a stronger austenite stabilizing effect than nitrogen. Hence, the smallest amount of strain-induced α′-martensite was formed in the steel alloyed with 0.2 wt.% C. It also exhibited the optimal mechanical properties, including the highest ultimate tensile strength (1114 MPa), uniform elongation (63%), and total elongation (68%). Moreover, the interstitial content influences the occurrence of dynamic strain aging (DSA), which was only observed in the steel alloyed with carbon. With increasing C content, the triggering strain for DSA decreases, which can be confirmed by in situ magnetic measurements during tensile testing.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sourabh Shukla ◽  
Awanikumar P. Patil ◽  
Ashlesha Kawale ◽  
Anand Babu Kotta ◽  
Inayat Ullah

Purpose Effect of grain size on degree of sensitization (DOS) was been evaluated in Nickel free steel. Manganese and nitrogen contained alloy is a Ni-free austenitic stainless steels (ASS) having type 202 grade. The main purpose of this investigation is to find the effect of recrystallization on the DOS of stainless steel after the thermo-mechanical processing (cold work and thermal aging). Design/methodology/approach In the present investigation, the deformation of 202 grade analyzed using X-ray diffraction (XRD) and microstructural testing. Optical microstructure of Ni-free ASS has been done for cold worked samples with thermally aged at 900°C_6 h. Double loop electrochemical potentiodynamic reactivation test used for findings of degree of sensitization. Findings Ni-free ASS appears to be deformed more rapidly due to its higher stacking fault energy which gave results in rapid transformation from strain induced martensite to austenite in form of recrystallized grains, i.e. it concluded that as cold work percentage increases more rapidly recrystallization occurs. XRD results also indicate that more fraction of martensite formed as percentage of CW increases but as thermal aging reverted those all martensite to austenite. So investigation gives the conclusion which suggests that with high deformation at higher temperature and duration gives very less DOS. Originality/value Various literatures available for 300 series steel related to the effect of cold work on mechanical properties and sensitization mechanism. However, no one has investigated the effect of recrystallization through thermomechanical processing on the sensitization of nickel-free steel.


CORROSION ◽  
10.5006/3778 ◽  
2021 ◽  
Author(s):  
sourabh shukla ◽  
Awanikumar Patil ◽  
Ankur Bansod

The surface phase constituent of high-manganese austenitic stainless steel after cold work (15%, 30%, and 50%) and thermal aging at 900°C for 30 min. and 6 hrs, was characterized using X-Ray diffraction spectrum. The microstructural analysis was conducted using an optical microscope, a scanning electron microscope, and the electron back scattered diffraction technique. The double-loop electrochemical potentiokinetic reactivation test was used to measure the Intergranular corrosion resistance (degrees of sensitization). The results showed that fine-recovered grains of austenite and strain-induced martensite together formed the surface of high-manganese steel after cold work. Because of the formation of strain-induced martensite in the cold work samples, their Intergranular corrosion were much higher than that of the as-received sample. Besides, the degree of sensitization of 15% cold work was higher (i.e., more intergranular corrosion) compared to the degrees of sensitization of 30% and 50% cold work. On the contrary, the intergranular corrosion of high-manganese austenitic stainless steel sample subjected to cold work was eliminated during thermal aging at 900°C for six hours because of the reversion of strain-induced martensite and fine-reverted austenite grains. Owing to this grain refinement of austenite, faster diffusion rate of Cr at higher temperature and cold work helped healing of Cr-depletion zone in a shorter time. In other words, because the results showed that on 50% cold work and thermal aging at 900°C for six hours, the high-manganese austenitic stainless steel does not become susceptible to intergranular corrosion. Hence, it could be beneficial to investigate the intergranular corrosion of high-manganese austenitic stainless steel.


Sign in / Sign up

Export Citation Format

Share Document