Preliminary Results from a Powder Diffraction Data Intensity Round-Robin

1988 ◽  
pp. 309-315
Author(s):  
Walter N. Schreiner ◽  
Ron Jekins
1987 ◽  
Vol 31 ◽  
pp. 309-315
Author(s):  
Walter N. Schreiner ◽  
Ron Jenkins

For many years the International Centre for Diffraction Data has sponsored round robins covering various aspects of X-ray powder Diffraction with the objective of illuminating and understanding current practices and problems associated with, the analysis of diffraction data. As computer analysis of diffraction data becomes ever more sophisticated, analytic capabilities are extended and the performance, not only of the instrumentation must be checked, but also that of the software which converts the measured data into useful results. In recent years, therefore, we have personally participated in a cell parameter round-robin, a d-spacing round-robin, a peak hunting round-robin, and, most recently, the present intensity round-robin and a line profile round-robin. Still others are in progress or being planned.


2019 ◽  
Author(s):  
Carmen Guguta ◽  
Jan M.M. Smits ◽  
Rene de Gelder

A method for the determination of crystal structures from powder diffraction data is presented that circumvents the difficulties associated with separate indexing. For the simultaneous optimization of the parameters that describe a crystal structure a genetic algorithm is used together with a pattern matching technique based on auto and cross correlation functions.<br>


2013 ◽  
Vol 28 (S2) ◽  
pp. S481-S490
Author(s):  
Oriol Vallcorba ◽  
Anna Crespi ◽  
Jordi Rius ◽  
Carles Miravitlles

The viability of the direct-space strategy TALP (Vallcorba et al., 2012b) to solve crystal structures of molecular compounds from laboratory powder diffraction data is shown. The procedure exploits the accurate metric refined from a ‘Bragg-Brentano’ powder pattern to extract later the intensity data from a second ‘texture-free’ powder pattern with the DAJUST software (Vallcorba et al., 2012a). The experimental setup for collecting this second pattern consists of a circularly collimated X-ray beam and a 2D detector. The sample is placed between two thin Mylar® foils, which reduces or even eliminates preferred orientation. With the combination of the DAJUST and TALP software a preliminary but rigorous structural study of organic compounds can be carried out at the laboratory level. In addition, the time-consuming filling of capillaries with diameters thinner than 0.3mm is avoided.


2002 ◽  
Vol 353 (3-4) ◽  
pp. 185-194 ◽  
Author(s):  
Scott Habershon ◽  
Kenneth D.M. Harris ◽  
Roy L. Johnston ◽  
Giles W. Turner ◽  
Jennifer M. Johnston

2003 ◽  
Vol 12 (3) ◽  
pp. 310-314
Author(s):  
Chen Jian-Rong ◽  
Gu Yuan-Xin ◽  
Fan Hai-Fu

2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


Sign in / Sign up

Export Citation Format

Share Document