Evidence for a Strong Crust-Mantle Boundary Undulation in the Tyrrhenian Sea from a Refraction Seismic Survey

Author(s):  
Christel Böttcher
2021 ◽  
Author(s):  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Ingo Grevemeyer ◽  
Grazia Caielli ◽  
Roberto de Franco ◽  
...  

<p>The Ligurian Basin is located north-west of Corsica at the transition from the western Alpine orogen to the Apennine system. The Back-arc basin was generated by the southeast retreat of the Apennines-Calabrian subduction zone. The opening took place from late Oligocene to Miocene. While the extension led to extreme continental thinning little is known about the style of back-arc rifting. Today, seismicity indicates the closure of this back-arc basin. In the basin, earthquake clusters occur in the lower crust and uppermost mantle and are related to re-activated, inverted, normal faults created during rifting.</p><p>To shed light on the present day crustal and lithospheric architecture of the Ligurian Basin, active seismic data have been recorded on short period ocean bottom seismometers in the framework of SPP2017 4D-MB, the German component of AlpArray. An amphibious refraction seismic profile was shot across the Ligurian Basin in an E-W direction from the Gulf of Lion to Corsica. The profile comprises 35 OBS and three land stations at Corsica to give a complete image of the continental thinning including the necking zone.</p><p>The majority of the refraction seismic data show mantle phases with offsets up to 70 km. The arrivals of seismic phases were picked and used to generate a 2-D P-wave velocity model. The results show a crust-mantle boundary in the central basin at ~12 km depth below sea surface. The P-wave velocities in the crust reach 6.6 km/s at the base. The uppermost mantle shows velocities >7.8 km/s. The crust-mantle boundary becomes shallower from ~18 km to ~12 km depth within 30 km from Corsica towards the basin centre. The velocity model does not reveal an axial valley as expected for oceanic spreading. Further, it is difficult to interpret the seismic data whether the continental lithosphere was thinned until the mantle was exposed to the seafloor. However, an extremely thinned continental crust indicates a long lasting rifting process that possibly did not initiate oceanic spreading before the opening of the Ligurian Basin stopped. The distribution of earthquakes and their fault plane solutions, projected along our seismic velocity model, is in-line with the counter-clockwise opening of the Ligurian Basin.</p>


2010 ◽  
Vol 63 (4) ◽  
pp. 311-320
Author(s):  
Toshiyuki Kagawa ◽  
Toshifumi Matsuoka ◽  
Takao Aizawa ◽  
Tetsuaki Hayashi

1968 ◽  
Vol 5 (5) ◽  
pp. 1297-1303 ◽  
Author(s):  
J. R. Weber ◽  
A. K. Goodacre

A study of the results of the gravity and seismic surveys in Hudson Bay in 1965 has shown that the gravitational effect of a two-layer model based on the seismically determined depths has no correlation with the observed gravity anomalies. On the profile from Churchill to Povungnituk the gravity and seismic observations can be reconciled by postulating lateral variations of the acoustic compressional wave velocity within the crust. A crustal model has been calculated—using the same time-terms and the same mean crustal velocity—whose gravitational effect fits the observed gravity. The velocity varies from 6.15 to 6.56 km/s and the postulated depths are almost entirely within the confidence limits of the original model.In order to test the hypothesis, the postulated velocity variations have been compared with the lower refractor velocities of the shallow seismic survey, based on the assumption that the crustal velocities ought to be systematically higher than the crystalline surface velocities and that there may be a correlation between variations in crustal and surface velocities. The test is inconclusive because bottom refractor velocities are higher than crustal velocities in two areas where volcanic flows and high-velocity sediments may be present.The case of linearly related velocity (V) and density (ρ) variations has been analyzed and it is shown that the gravitational effect of the crust–mantle boundary undulations may be completely masked or even overbalanced by density changes in the crust if [Formula: see text]. The crust can be characterized by having dominant velocity variations (in which case the gravity anomaly reflects the undulations of the crust–mantle boundary) or dominant density variations (in which case the gravity anomaly inversely reflects the crust–mantle boundary undulations) depending on the relationship between average crustal density and average crustal velocity.


2003 ◽  
Vol 40 (10) ◽  
pp. 1307-1320 ◽  
Author(s):  
B Nitescu ◽  
A R Cruden ◽  
R C Bailey

The Moho undulations beneath the western part of the Archean Superior Province have been investigated with a three-dimensional gravity inversion algorithm for a single interface of constant density contrast. Inversion of the complete gravity data set produces unreal effects in the solution due to the ambiguity in the possible sources of some crustal gravity anomalies. To avoid these effects a censored gravity data set was used instead. The inversion results are consistent with reflection and refraction seismic data from the region and, therefore, provide a basis for the lateral correlation of the Moho topography between parallel seismic lines. The results indicate the existence of a major linear east–west-trending rise of the Moho below the metasedimentary English River subprovince, which is paralleled by crustal roots below the granite–greenstone Uchi and Wabigoon subprovinces. This correlation between the subprovincial structure at the surface and deep Moho undulations suggests that the topography of the crust–mantle boundary is related to the tectonic evolution of the Western Superior belts. Although certain features of the crust–mantle boundary are likely inherited from the accretionary and collisional stages of the Western Superior craton, gravity-driven processes triggered by subsequent magmatism and crustal softening may have played a role in both the preservation of those features, as well as in the development of new ones.


Geomorphology ◽  
2010 ◽  
Vol 116 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
Julien Travelletti ◽  
Jehanne Demand ◽  
Michel Jaboyedoff ◽  
François Marillier

2020 ◽  
Author(s):  
Heidrun Kopp ◽  
Anke Dannowski ◽  
Ingo Grevemeyer ◽  
Dietrich Lange ◽  
Martin Thorwart ◽  
...  

<p>The Ligurian Basin is located north-west of Corsica at the transition from the western Alpine orogen to the Apennine system. The Back-arc basin was generated by the southeast trench retreat of the Apennines-Calabrian subduction zone. The opening took place from late Oligocene to Miocene. While the extension led to extreme continental thinning and un-roofing of mantle material little is known about the style of back-arc rifting.</p><p>To shed light on the present day crustal and lithospheric architecture of the Ligurian Basin, active seismic data have been recorded on short period ocean bottom seismometers in the framework of SPP2017 4D-MB, the German component of AlpArray. An amphibious refraction seismic profile was shot across the Ligurian Basin in an E-W direction from the Gulf of Lion to Corsica. The profile extends onshore Corsica to image the necking zone of continental thinning.</p><p>The majority of the refraction seismic data show mantle phases at offsets up to 70 km. The arrivals of seismic phases were picked and inverted in a travel time tomography. The results show a crust-mantle boundary in the central basin at ~12 km depth below sea surface. The mantle shows rather high velocities >7.8 km/s. The crust-mantle boundary deepens from ~12 km to ~18 km within 25 - 30 km towards Corsica. The results do not map an axial valley as expected for oceanic spreading. However, an extremely thinned continental crust indicates a long lasting rifting process that possibly does not initiated oceanic spreading before the opening of the Ligurian Basin stopped.</p>


Sign in / Sign up

Export Citation Format

Share Document