Language Design for Relational Model Management

Author(s):  
Robert W. Blanning
2007 ◽  
Author(s):  
Aaron C. H. Schat ◽  
M. Sandy Hershcovis ◽  
E. Kevin Kelloway

10.1558/37291 ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 242-263
Author(s):  
Stefano Rastelli ◽  
Kook-Hee Gil

This paper offers a new insight into GenSLA classroom research in light of recent developments in the Minimalist Program (MP). Recent research in GenSLA has shown how generative linguistics and acquisition studies can inform the language classroom, mostly focusing on what linguistic aspects of target properties should be integrated as a part of the classroom input. Based on insights from Chomsky’s ‘three factors for language design’ – which bring together the Faculty of Language, input and general principles of economy and efficient computation (the third factor effect) for language development – we put forward a theoretical rationale for how classroom research can offer a unique environment to test the learnability in L2 through the statistical enhancement of the input to which learners are exposed.


1984 ◽  
Author(s):  
D. C. Luckham
Keyword(s):  

1978 ◽  
Vol 13 (9) ◽  
pp. 59-75 ◽  
Author(s):  
Mary Shaw ◽  
Paul Hilfinger ◽  
Wm. A. Wulf
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Praveen Kumar ◽  
Akhouri P. Krishna ◽  
Thorkild M. Rasmussen ◽  
Mahendra K. Pal

Optical remote sensing data are freely available on a global scale. However, the satellite image processing and analysis for quick, accurate, and precise forest above ground biomass (AGB) evaluation are still challenging and difficult. This paper is aimed to develop a novel method for precise, accurate, and quick evaluation of the forest AGB from optical remote sensing data. Typically, the ground forest AGB was calculated using an empirical model from ground data for biophysical parameters such as tree density, height, and diameter at breast height (DBH) collected from the field at different elevation strata. The ground fraction of vegetation cover (FVC) in each ground sample location was calculated. Then, the fraction of vegetation cover (FVC) from optical remote sensing imagery was calculated. In the first stage of method implementation, the relation model between the ground FVC and ground forest AGB was developed. In the second stage, the relational model was established between image FVC and ground FVC. Finally, both models were fused to derive the relational model between image FVC and forest AGB. The validation of the developed method was demonstrated utilizing Sentinel-2 imagery as test data and the Tundi reserved forest area located in the Dhanbad district of Jharkhand state in eastern India was used as the test site. The result from the developed model was ground validated and also compared with the result from a previously developed crown projected area (CPA)-based forest AGB estimation approach. The results from the developed approach demonstrated superior capabilities in precision compared to the CPA-based method. The average forest AGB estimation of the test site obtained by this approach revealed 463 tons per hectare, which matches the previous estimate from this test site.


Sign in / Sign up

Export Citation Format

Share Document