Gauge Fixing Degeneracies, Confinement and Other Problems for Non-Abelian Gauge Theories

Author(s):  
Heinz Pagels
Author(s):  
Jean Zinn-Justin

Chapter 14 contains a general discussion of the quantization and renormalization of non–Abelian gauge theories. The quantization necessitates gauge fixing and introduces the Faddeev–Popov determinant. Slavnov–Taylor identities for vertex (one–particle–irreducible (1PI)) functions, the basis of a first proof of renormalizability, follow. The Faddeev–Popov determinant leads to a non–local action. A local form is generated by introducing Faddeev–Popov ghost fields. The new local action has an important new symmetry, the BRST symmetry. However, the explicit realization of the symmetry is not stable under renormalization. By contrast, a quadratic equation that is satisfied by the action and generating functional of 1PI functions, the Zinn–Justin equation, is stable and at the basis of a general proof of the renormalizability of non–Abelian gauge theories. The proof involves some simple elements of BRST cohomology. The renormalized form of BRST symmetry then makes it possible to prove gauge independence and unitarity.


Author(s):  
Jean Zinn-Justin

The first part of the chapter describes Faddeev–Popov's quantization method, nd the resulting Slavnov–Taylor (ST) identities, in a simple context. This construction automatically implies, after introduction of Faddeev–Popov ‘ghost’ fermions, a Becchi–Rouet–Stora–Tyutin (BRST) symmetry, whose properties are derived. The differential operator, of fermionic type, representing the BRST symmetry, with a proper choice of variables, has the form of a cohomology operator, and a simple form in terms of Grassmann coordinates. The second part of the chapter is devoted to the quantization and renormalization of non-Abelian gauge theories. Quantization of gauge theories require a gauge-fixing procedure. Starting from the non-covariant temporal gauge, and using a simple identity, one shows the equivalence with a quantization in a general class of gauges, including relativistic covariant gauges. Adapting the formalism developed in the first part, ST identities, and the corresponding BRST symmetry are derived. However, the explicit form of the BRST symmetry is not stable under renormalization. The BRST symmetry implies a more general, quadratic master equation, also called Zinn-Justin (ZJ) equation, satisfied by the quantized action, equation in which gauge and BRST symmetries are no longer explicit. By contrast, in the case of renormalizable gauges, the ZJ equation is stable under renormalization, and its solution yields the general form of the renormalized gauge action.


1985 ◽  
Vol 63 (10) ◽  
pp. 1334-1336
Author(s):  
Stephen Phillips

The mathematical problem of inverting the operator [Formula: see text] as it arises in the path-integral quantization of an Abelian gauge theory, such as quantum electrodynamics, when no gauge-fixing Lagrangian field density is included, is studied in this article.Making use of the fact that the Schwinger source functions, which are introduced for the purpose of generating Green's functions, are free of divergence, a result that follows from the conversion of the exponentiated action into a Gaussian form, the apparently noninvertible partial differential equation, [Formula: see text], can, by the addition and subsequent subtraction of terms containing the divergence of the source function, be cast into a form that does possess a Green's function solution. The gauge-field propagator is the same as that obtained by the conventional technique, which involves gauge fixing when the gauge parameter, α, is set equal to one.Such an analysis suggests also that, provided the effect of fictitious particles that propagate only in closed loops are included for the study of Green's functions in non-Abelian gauge theories in Landau-type gauges, then, in quantizing either Abelian gauge theories or non-Abelian gauge theories in this generic kind of gauge, it is not necessary to add an explicit gauge-fixing term to the bilinear part of the gauge-field action.


Author(s):  
Jean Zinn-Justin

This chapter is devoted Abelian gauge theory, whose physical realization is quantum electrodynamics (QED). Since many textbooks deal extensively with QED, the chapter focusses mainly on the more formal properties of Abelian gauge theories. First, the free massive vector field is considered, because its quantization does not immediately follow from the quantization of the scalar field, and thus requires a specific analysis. If the vector field is coupled to a conserved current, it is possible to construct a field theory with fermion matter renormalizable in four dimensions. In this case, a massless vector limit can be defined, and the corresponding field theory is gauge invariant. To directly quantize a gauge theory starting directly from first principles, it is necessary to introduce gauge fixing. The formal equivalence between different gauges is established. The Abelian gauge symmetry, broken by gauge-fixing terms, leads to a set of Ward–Takahashi (WT) identities which are used to prove the renormalizability of the quantum field theory (QFT). Renormalization group (RG) equations follow, and the RG β-function is calculated at leading order. As an introduction to the Standard Model of particle physics, the Abelian Landau–Ginzburg–Higgs model is described, where the gauge field is coupled to a complex scalar field with a non-zero expectation value, leading to a model that classically also describes a superconductor in a magnetic field.


1978 ◽  
Vol 17 (4) ◽  
pp. 1086-1096 ◽  
Author(s):  
Carl M. Bender ◽  
Tohru Eguchi ◽  
Heinz Pagels

Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Neelima Agarwal ◽  
Lorenzo Magnea ◽  
Sourav Pal ◽  
Anurag Tripathi

Abstract Correlators of Wilson-line operators in non-abelian gauge theories are known to exponentiate, and their logarithms can be organised in terms of collections of Feynman diagrams called webs. In [1] we introduced the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with connected gluon correlators, and we computed the mixing matrices for all Cwebs connecting four or five Wilson lines at four loops. Here we complete the evaluation of four-loop mixing matrices, presenting the results for all Cwebs connecting two and three Wilson lines. We observe that the conjuctured column sum rule is obeyed by all the mixing matrices that appear at four-loops. We also show how low-dimensional mixing matrices can be uniquely determined from their known combinatorial properties, and provide some all-order results for selected classes of mixing matrices. Our results complete the required colour building blocks for the calculation of the soft anomalous dimension matrix at four-loop order.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Temple He ◽  
Prahar Mitra

Abstract We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector of the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.


Sign in / Sign up

Export Citation Format

Share Document