From Random Walks to Random Matrices
Latest Publications


TOTAL DOCUMENTS

25
(FIVE YEARS 25)

H-INDEX

0
(FIVE YEARS 0)

Published By Oxford University Press

9780198787754, 9780191829840

Author(s):  
Jean Zinn-Justin

Chapter 24 examines the topic of hyper–asymptotic expansions and instantons. A number of quantum mechanics and quantum field theory (QFT) examples exhibit degenerate classical minima connected by quantum barrier penetration effects. The analysis of the large order behaviour, based on instanton calculus, shows that the perturbative expansion is not Borel summable, and does not define unique functions. An important issue is then what kind of additional information is required to determine the exact expanded functions. While the QFT examples are complicated, and their study is still at the preliminary stage, in quantum mechanics, in the case of some analytic potentials that have degenerate minima (like the quartic double–well potential), the problem has been completely solved. Some examples are described in Chapter 24. There, the perturbative, complete, hyper–asymptotic expansion exhibits the resurgence property. The perturbative expansion can be related to the calculation of the spectral equation via the complex WKB method.


Author(s):  
Jean Zinn-Justin

Chapter 14 contains a general discussion of the quantization and renormalization of non–Abelian gauge theories. The quantization necessitates gauge fixing and introduces the Faddeev–Popov determinant. Slavnov–Taylor identities for vertex (one–particle–irreducible (1PI)) functions, the basis of a first proof of renormalizability, follow. The Faddeev–Popov determinant leads to a non–local action. A local form is generated by introducing Faddeev–Popov ghost fields. The new local action has an important new symmetry, the BRST symmetry. However, the explicit realization of the symmetry is not stable under renormalization. By contrast, a quadratic equation that is satisfied by the action and generating functional of 1PI functions, the Zinn–Justin equation, is stable and at the basis of a general proof of the renormalizability of non–Abelian gauge theories. The proof involves some simple elements of BRST cohomology. The renormalized form of BRST symmetry then makes it possible to prove gauge independence and unitarity.


Author(s):  
Jean Zinn-Justin

Chapter 11 is the first of four chapters that discuss various issues connected with the Standard Model of fundamental interactions at the microscopic scale. It discusses the important notion of gauge invariance, first Abelian and then non–Abelian, the basic geometric structure that generates interactions. It relates it to the concept of parallel transport. Due to gauge invariance, not all components of the gauge field are dynamical and gauge fixing is required (with the problem of Gribov copies in non–Abelian theories). The quantization of non–Abelian gauge theories is briefly discussed, with the introduction of Faddeev–Popov ghost fields and the appearance of BRST symmetry.


Author(s):  
Jean Zinn-Justin

Chapter 9 focuses on the non–perturbative renormalization group. Many renormalization group (RG) results are derived within the framework of the perturbative RG. However, this RG is the asymptotic form in some neighbourhood of a Gaussian fixed point of the more general and exact RG, as introduced by Wilson and Wegner, and valid for rather general effective field theories. Chapter 9 describes the corresponding functional RG equations and give some indications about their derivation. A basic role is played by a method of partial field integration, which preserves the locality of the field theory. Note that functional RG equations can also be used to give alternative proofs of perturbative renormalizability within the framework of effective field theories.


Author(s):  
Jean Zinn-Justin

Chapter 8 discusses effective field theory. This concept is inspired by the theory of critical phenomena in statistical physics and based on renormalization group ideas. The basic idea behind effective field theory is that one starts from a microscopic model involving an infinite number of fluctuating degrees of freedom whose interactions are characterized by a microscopic scale and in which, as a result of interactions, a length that is much larger than the microscopic scale, or, equivalently, a mass much smaller than the characteristic mass scale of the initial model, is generated. The chapter illustrates this topic with examples. It also stresses that all quantum field theories as applied to particle physics or statistical physics are only effective (i.e. not fundamental) theories. Besides the problem of a phi4 type field theory with a large mass field, two more complicated examples are discussed: the Gross–Neveu and the non–linear sigma models.


Author(s):  
Jean Zinn-Justin

Chapter 7 is devoted to a discussion of the renormalization group (RG) flow when the effective field theory that describes universal properties of critical phenomena depends on several coupling constants. The universal properties of a large class of macroscopic phase transitions with short range interactions can be described by statistical field theories involving scalar fields with quartic interactions. The simplest critical systems have an O(N) orthogonal symmetry and, therefore, the corresponding field theory has only one quartic interaction. However, in more general physical systems, the flow of quartic interactions is more complicated. This chapter examines these systems from the RG viewpoint. RG beta functions are shown to generate a gradient flow. Some examples illustrate the notion of emergent symmetry. The local stability of fixed points is related to the value of the scaling field dimension.


Author(s):  
Jean Zinn-Justin

Chapter 25 discusses how, in the mid–1980s, it was realized that some ensembles of random matrices in the large size and double scaling limit could be used as toy models for two–dimensional quantum gravity coupled to conformal matter and string theory, or as examples of critical statistical models (like the critical Ising model) on continuum random surfaces. The method is based on a perturbative expansion in terms of fat Feynman diagrams associated with tessalated surfaces, organized as a topological expansion. A tremendous development of random matrix theory followed, and a number of matrix models have been solved exactly. The solutions exhibit a universal behaviour with respect to changes of the matrix potential. Therefore, it is tempting to use renormalization group (RG) ideas to determine universal properties, without solving models explicitly. Approximate RG equations have been derived, yielding interesting results, but a strategy for systematic improvement is lacking.


Author(s):  
Jean Zinn-Justin

Chapter 23 examines perturbative expansion and summation methods in field theory. In quantum field theory, all perturbative expansions are divergent series in the mathematical sense. This leads to a difficulty when the expansion parameter is not small. In the case of Borel summable series, using the knowledge of the large order behaviour, a number of summation techniques have been developed to derive convergent sequences from divergent series. Some methods apply directly on the series like Padé approximants or order–dependent mapping (the ODM method). Others involve first a Borel transformation, like the Padé–Borel method. The method of Borel transformation, suitably modified, followed by a conformal mapping, has been applied to renormalization group (RG) functions of the phi4 3 field theory and has led to precise values of critical exponents.


Author(s):  
Jean Zinn-Justin

Chapter 18 describes a few systems where the classical action has an infinite number of degenerate minima but, in the quantum theory, this degeneracy is lifted by barrier penetration effects. The simplest example is the cosine periodic potential and leads to the band structure. Technically, this corresponds to the existence of instantons, solutions to classical equations in imaginary time. In all examples, we show that the classical solutions are constrained by Bogomolnyi’s inequalities, which involve topological charges associated to a winding number and defining homotopy classes. In the case of quantum chromodynamics, this leads to the famous strong CP violation problem.


Author(s):  
Jean Zinn-Justin

Chapter 17 exhibits various examples where classical symmetries cannot be transferred to quantum theories. The obstructions are characterized by anomalies. The examples involve chiral symmetries combined with currents or gauge symmetries, leading to chiral anomalies. In particular, anomalies lead to obstruction in the construction of theories. In particular, the structure of the Standard Model of particle physics is constrained by the requirement of anomaly cancellation. Other applications, like the relation between electromagnetic pi0 decay and the axial anomaly, are described. Anomalies are related to the Dirac operator index, leading to relations between anomaly and topology. To prove anomaly cancellation beyond perturbation theory, one can use lattice regularization. However, the definition of lattice chiral transformations is non–trivial. It is based on solutions of the Ginsparg–Wilson relation.


Sign in / Sign up

Export Citation Format

Share Document