A Framework for Interactive 3D Applications

Author(s):  
Roy Hall ◽  
Danielle Forsyth
Author(s):  
Tianyi Liu ◽  
Sen He ◽  
Sunzhou Huang ◽  
Danny Tsang ◽  
Lingjia Tang ◽  
...  

2010 ◽  
Vol 29 (6) ◽  
pp. 1830-1841 ◽  
Author(s):  
S. Hillaire ◽  
G. Breton ◽  
N. Ouarti ◽  
R. Cozot ◽  
A. Lécuyer

2017 ◽  
Vol 168 (3) ◽  
pp. 127-133
Author(s):  
Matthew Parkan

Airborne LiDAR data: relevance of visual interpretation for forestry Airborne LiDAR surveys are particularly well adapted to map, study and manage large forest extents. Products derived from this technology are increasingly used by managers to establish a general diagnosis of the condition of forests. Less common is the use of these products to conduct detailed analyses on small areas; for example creating detailed reference maps like inventories or timber marking to support field operations. In this context, the use of direct visual interpretation is interesting, because it is much easier to implement than automatic algorithms and allows a quick and reliable identification of zonal (e.g. forest edge, deciduous/persistent ratio), structural (stratification) and point (e.g. tree/stem position and height) features. This article examines three important points which determine the relevance of visual interpretation: acquisition parameters, interactive representation and identification of forest characteristics. It is shown that the use of thematic color maps within interactive 3D point cloud and/or cross-sections makes it possible to establish (for all strata) detailed and accurate maps of a parcel at the individual tree scale.


2018 ◽  
Vol 30 (7) ◽  
pp. 1268 ◽  
Author(s):  
Guodao Sun ◽  
Puyong Huang ◽  
Yipeng Liu ◽  
Ronghua Liang

Micron ◽  
2010 ◽  
Vol 41 (7) ◽  
pp. 886.e1-886.e17 ◽  
Author(s):  
Bernhard Ruthensteiner ◽  
Natalie Baeumler ◽  
David G. Barnes

Displays ◽  
1991 ◽  
Vol 12 (2) ◽  
pp. 110
Author(s):  
Tencor Instruments
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 600
Author(s):  
Cristina Bran ◽  
Jose Angel Fernandez-Roldan ◽  
Rafael P. del Real ◽  
Agustina Asenjo ◽  
Oksana Chubykalo-Fesenko ◽  
...  

Cylindrical magnetic nanowires show great potential for 3D applications such as magnetic recording, shift registers, and logic gates, as well as in sensing architectures or biomedicine. Their cylindrical geometry leads to interesting properties of the local domain structure, leading to multifunctional responses to magnetic fields and electric currents, mechanical stresses, or thermal gradients. This review article is summarizing the work carried out in our group on the fabrication and magnetic characterization of cylindrical magnetic nanowires with modulated geometry and anisotropy. The nanowires are prepared by electrochemical methods allowing the fabrication of magnetic nanowires with precise control over geometry, morphology, and composition. Different routes to control the magnetization configuration and its dynamics through the geometry and magnetocrystalline anisotropy are presented. The diameter modulations change the typical single domain state present in cubic nanowires, providing the possibility to confine or pin circular domains or domain walls in each segment. The control and stabilization of domains and domain walls in cylindrical wires have been achieved in multisegmented structures by alternating magnetic segments of different magnetic properties (producing alternative anisotropy) or with non-magnetic layers. The results point out the relevance of the geometry and magnetocrystalline anisotropy to promote the occurrence of stable magnetochiral structures and provide further information for the design of cylindrical nanowires for multiple applications.


Sign in / Sign up

Export Citation Format

Share Document