The local modulus of continuity of an analytic function

Author(s):  
Wayne Smith ◽  
David A. Stegenga
Author(s):  
Jani Onninen ◽  
Ville Tengvall

Let be an open set in ℝn and suppose that is a Sobolev homeomorphism. We study the regularity of f–1 under the Lp-integrability assumption on the distortion function Kf. First, if is the unit ball and p > n – 1, then the optimal local modulus of continuity of f–1 is attained by a radially symmetric mapping. We show that this is not the case when p ⩽ n – 1 and n ⩾ 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for ∣Df–1∣ in terms of the Lp-integrability assumptions of Kf.


Author(s):  
Ugo Gianazza ◽  
Naian Liao

Abstract We prove an estimate on the modulus of continuity at a boundary point of a cylindrical domain for local weak solutions to singular parabolic equations of $p$-Laplacian type, with $p$ in the sub-critical range $\big(1,\frac{2N}{N+1}\big]$. The estimate is given in terms of a Wiener-type integral, defined by a proper elliptic $p$-capacity.


2020 ◽  
Vol 26 (2) ◽  
pp. 185-192
Author(s):  
Sunanda Naik ◽  
Pankaj K. Nath

AbstractIn this article, we define a convolution operator and study its boundedness on mixed-norm spaces. In particular, we obtain a well-known result on the boundedness of composition operators given by Avetisyan and Stević in [K. Avetisyan and S. Stević, The generalized Libera transform is bounded on the Besov mixed-norm, BMOA and VMOA spaces on the unit disc, Appl. Math. Comput. 213 2009, 2, 304–311]. Also we consider the adjoint {\mathcal{A}^{b,c}} for {b>0} of two parameter families of Cesáro averaging operators and prove the boundedness on Besov mixed-norm spaces {B_{\alpha+(c-1)}^{p,q}} for {c>1}.


2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


Sign in / Sign up

Export Citation Format

Share Document