Experiment 3 The Optics of Telescopes: Part I. Image Size and Brightness

Author(s):  
Leslie M. Golden
Keyword(s):  
1998 ◽  
Vol 505 (1) ◽  
pp. 50-73 ◽  
Author(s):  
Matthew A. Bershady ◽  
James D. Lowenthal ◽  
David C. Koo

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 991
Author(s):  
Yuta Nakahara ◽  
Toshiyasu Matsushima

In information theory, lossless compression of general data is based on an explicit assumption of a stochastic generative model on target data. However, in lossless image compression, researchers have mainly focused on the coding procedure that outputs the coded sequence from the input image, and the assumption of the stochastic generative model is implicit. In these studies, there is a difficulty in discussing the difference between the expected code length and the entropy of the stochastic generative model. We solve this difficulty for a class of images, in which they have non-stationarity among segments. In this paper, we propose a novel stochastic generative model of images by redefining the implicit stochastic generative model in a previous coding procedure. Our model is based on the quadtree so that it effectively represents the variable block size segmentation of images. Then, we construct the Bayes code optimal for the proposed stochastic generative model. It requires the summation of all possible quadtrees weighted by their posterior. In general, its computational cost increases exponentially for the image size. However, we introduce an efficient algorithm to calculate it in the polynomial order of the image size without loss of optimality. As a result, the derived algorithm has a better average coding rate than that of JBIG.


2021 ◽  
Vol 11 (2) ◽  
pp. 813
Author(s):  
Shuai Teng ◽  
Zongchao Liu ◽  
Gongfa Chen ◽  
Li Cheng

This paper compares the crack detection performance (in terms of precision and computational cost) of the YOLO_v2 using 11 feature extractors, which provides a base for realizing fast and accurate crack detection on concrete structures. Cracks on concrete structures are an important indicator for assessing their durability and safety, and real-time crack detection is an essential task in structural maintenance. The object detection algorithm, especially the YOLO series network, has significant potential in crack detection, while the feature extractor is the most important component of the YOLO_v2. Hence, this paper employs 11 well-known CNN models as the feature extractor of the YOLO_v2 for crack detection. The results confirm that a different feature extractor model of the YOLO_v2 network leads to a different detection result, among which the AP value is 0.89, 0, and 0 for ‘resnet18’, ‘alexnet’, and ‘vgg16’, respectively meanwhile, the ‘googlenet’ (AP = 0.84) and ‘mobilenetv2’ (AP = 0.87) also demonstrate comparable AP values. In terms of computing speed, the ‘alexnet’ takes the least computational time, the ‘squeezenet’ and ‘resnet18’ are ranked second and third respectively; therefore, the ‘resnet18’ is the best feature extractor model in terms of precision and computational cost. Additionally, through the parametric study (influence on detection results of the training epoch, feature extraction layer, and testing image size), the associated parameters indeed have an impact on the detection results. It is demonstrated that: excellent crack detection results can be achieved by the YOLO_v2 detector, in which an appropriate feature extractor model, training epoch, feature extraction layer, and testing image size play an important role.


2021 ◽  
Vol 11 (4) ◽  
pp. 1667
Author(s):  
Kerstin Klaser ◽  
Pedro Borges ◽  
Richard Shaw ◽  
Marta Ranzini ◽  
Marc Modat ◽  
...  

Synthesising computed tomography (CT) images from magnetic resonance images (MRI) plays an important role in the field of medical image analysis, both for quantification and diagnostic purposes. Convolutional neural networks (CNNs) have achieved state-of-the-art results in image-to-image translation for brain applications. However, synthesising whole-body images remains largely uncharted territory, involving many challenges, including large image size and limited field of view, complex spatial context, and anatomical differences between images acquired at different times. We propose the use of an uncertainty-aware multi-channel multi-resolution 3D cascade network specifically aiming for whole-body MR to CT synthesis. The Mean Absolute Error on the synthetic CT generated with the MultiResunc network (73.90 HU) is compared to multiple baseline CNNs like 3D U-Net (92.89 HU), HighRes3DNet (89.05 HU) and deep boosted regression (77.58 HU) and shows superior synthesis performance. We ultimately exploit the extrapolation properties of the MultiRes networks on sub-regions of the body.


2013 ◽  
Vol 694-697 ◽  
pp. 1987-1992 ◽  
Author(s):  
Xing Gang Wu ◽  
Cong Guo

Proposed an approach to identify vehicles considering the variation in image size, illumination, and view angles under different cameras using Support Vector Machine with weighted random trees (WRT-SVM). With quantizing the scale-invariant features of image pairs by the weighted random trees, the identification problem is formulated as a same-different classification problem. Results show the efficiency of building the randomized tree due to the weights of the samples and the control of the false-positive rate of the identify system.


Sign in / Sign up

Export Citation Format

Share Document